组合式细节特征增强的隔离段流场智能重构方法
作者:
作者单位:

1.西南科技大学 信息工程学院;2.西南科技大学;3.中国空气动力研究与发展中心 空天技术研究所

作者简介:

通讯作者:

中图分类号:

V235.21; TP183

基金项目:

国家自然科学基金资助项目(11902337);西南科技大学研究生创新基金资助(24ycx1057)


Intelligent reconstruction method of isolator flow field based on combined detail feature enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超声速流场智能重构方法存在的复杂波系结构特征丢失,无法有效捕捉非定常流场的时间演化特性导致激波串前缘位置(shock train leading edge,STLE)无法准确辨识等问题,提出了一种基于组合式细节特征增强的神经网络模型。基于稀疏压力数据实现密度梯度场的高精度预测,模型通过多层卷积网络串联建立流场的主要波系结构特征,利用残差网络通过跳跃连接将不同尺度感受野的特征进行融合,增强重构流场的细节特征表达能力。基于冲压发动机数值模拟计算构建的数据集上进行验证,结果显示,与多层卷积神经网络相比,该方法在整个测试集上的平均峰值信噪比提升了9.5%。重构流场的STLE位置与数值计算结果高度吻合进一步证明了所提方法的有效性。

    Abstract:

    The intelligent reconstruction methods for supersonic flow fields face challenges such as the loss of complex wave system structure features and the inability to effectively capture the temporal evolution characteristics of unsteady flow fields, leading to inaccurate identification of the shock train leading edge. A neural network model based on combined detail feature enhancement to address these issues was proposed. High-precision predictions of the density gradient field was achieved based on sparse pressure data. The main wave system structure features of the flow field was established by connecting multiple layers of convolutional networks in series. A residual network with skip connections was used to integrate features from receptive fields of different scales, enhancing the model's ability to express detail features in reconstructed flow fields. Validation was conducted using a dataset constructed from numerical simulations of ramjet engines. Compared to multilayer convolutional neural networks, this method improves the average Peak Signal-to-Noise Ratio across the entire test set by 9.5%. Moreover, the reconstructed flow field's STLE position closely matches the numerical computation results, further demonstrating the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-04
  • 最后修改日期:2025-09-13
  • 录用日期:2025-04-08
  • 在线发布日期:
  • 出版日期:
文章二维码