YOLOv8-DM轻量化光伏组件缺陷检测方法
DOI:
作者:
作者单位:

昆明理工大学信息与控制工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

面向转炉炼钢终点控制的火焰吹炼信息特征提取与熔池碳温连续实时预报模型研究


Lightweight Photovoltaic Module Defect Detection with YOLOv8-DM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏组件损伤检测的难度大、现有检测技术对人力和算力的需求高的现状,基于YOLOv8n提出了一种改进的轻量化模型YOLOv8-DM,结合电致发光成像技术和目标检测方法,实现光伏组件缺陷检测。创新性的提出尺度特征自适应金字塔网络和倒置残差高效多尺度注意力机制,并引入结合动态卷积的Ghost模块,针对YOLOv8n模型在特征表达和多尺度目标识别方面的不足进行优化,增强细粒度检测能力并降低计算复杂度。YOLOv8-DM模型在经数据增强的PVEL-AD数据集上测试,召回率和mAP50较初始模型分别提升3%和3.3%,参数量与算力需求分别降低34%和20%,可以较好满足光伏组件缺陷检测任务中对低计算成本和高检测精度的实际需求。

    Abstract:

    Given the challenges posed by photovoltaic component damage detection and the high demands placed on human and computational resources by existing detection technologies, an improved lightweight model named YOLOv8-DM was proposed based on YOLOv8n. The integration of Electroluminescence imaging with object detection methods was implemented to achieve PV defect detection. Innovative components were introduced, including a Dynamic Scale Feature Pyramid Network and an Inverted Residual Multiscale Attention Mechanism, along with a Ghost module enhanced by dynamic convolution. These modifications were specifically designed to address the deficiencies observed in the YOLOv8n model regarding feature representation and multiscale object recognition, which enhanced fine-grained detection capabilities and reduced computational complexity. When evaluated on the augmented PVEL-AD dataset, the model demonstrated an improvement of 3% in recall rate and 3.3% in mAP50 compared to the baseline model, with a 34% reduction in parameter count and a 20% decrease in computational demand. The optimized architecture was validated to effectively meet the practical requirements for high-accuracy PV defect detection with lower computational costs.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-05-30
  • 录用日期:2025-06-03
  • 在线发布日期: 2025-06-05
  • 出版日期:
文章二维码