面向图像处理逆问题的扩散模型研究综述
DOI:
作者:
作者单位:

国防科技大学 理学院

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国防科技大学自主创新基金(23-ZZCX-JDZ-01):XX智能感知XX建模研究第一作者:王泽龙(1985—),男,河北博野人,副教授,博士,硕士生导师,E-mail:zelong_wang@163.com;* 通信作者:吴宇航(2001—),男,甘肃张掖人,硕士研究生,E-mail:yuhangwu2023@163.com , LI Jian, YANG Xuan


A review of diffusion models for inverse problems in image processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    扩散模型是一种新型生成式人工智能模型,相比生成对抗网络、变分自编码网络、流模型等传统网络,具有训练稳健、生成保真性与多样性高、数学可解释性强等特点,在计算机视觉、信号处理、多模态学习等领域应用广泛。扩散模型能够充分学习挖掘训练图像的深度生成先验,为解决图像处理逆问题提供了一类全新解决范式。为了系统性梳理扩散模型发展现状,特别是其解决图像处理逆问题的最新进展,本文对面向图像处理逆问题的扩散模型研究进行了综述,阐述了扩散模型的基本原理及其发展现状,重点介绍了利用扩散模型解决图像处理逆问题的主要技术路线,以及本团队在该方向的具体应用成果,最后展望了未来研究方向。

    Abstract:

    Diffusion models represent a novel type of generative artificial intelligence models. Compared to traditional networks such as Generative Adversative Networks, Variational Autoencoders, and Flow models, diffusion models are characterized by their robust training, high fidelity and diversity in generation, and strong mathematical interpretability, and so they have been widely applied in fields of computer vision, signal processing, multi-modal learning and so on. Diffusion models are capable of sufficiently learning and exploring the deep generative priors from the training images, providing a novel paradigm for solving inverse problems in image processing. To systematically review the current developments of diffusion models, particularly the latest advancements in solving inverse problems in image processing, this paper provides a comprehensive survey on diffusion models for inverse problems in image processing. We firstly present its fundamental principles and recent developments, and then emphasize the introduction on the primary technical approaches as well as our specific application achievements for solving inverse problems in image processing. Finally, we outline the future research directions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-14
  • 最后修改日期:2025-06-25
  • 录用日期:2025-03-07
  • 在线发布日期:
  • 出版日期:
文章二维码