神经网络拟合的激光陀螺惯组重力实时测量滤波
DOI:
作者:
作者单位:

国防科技大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金资助项目(62203454)


Real time gravity measurement filtering of laser gyro IMU fitted by neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由激光陀螺惯组构成的组合导航重力测量系统已经在航空、航海、车载重力测量领域逐步拓展应用。重力测量需要抑制载体加速度扰动以提升测量精度,因此对重力数据进行滤波处理至关重要。传统的重力数据滤波方法存在固定长时延的问题,直接导致了重力匹配等使用场景的功能受限。为了解决以上问题,提出了一种基于神经网络拟合滤波的重力数据实时处理方法,对有限长单位冲激响应(Finite Impulse Response,FIR)滤波器进行了神经网络拟合,降低对未来数据的长依赖,可以有效减少时延。实验结果表明,所设计方法时延相比FIR滤波器降低93%,显著提升了数据处理的实时性,同时保持较高的精度,为激光陀螺惯组重力测量系统的实时重力测量提供了解决方案。

    Abstract:

    The integrated navigation gravity measurement system, composed of laser gyroscope-based inertial navigation systems, has gradually expanded its application in the fields of aviation, navigation, and vehicle gravity measurement. The disturbance of carrier acceleration needs to be suppressed to improve the accuracy of gravity measurement. Therefore, filtering the gravity data is of crucial importance. Traditional gravity data filtering methods are constrained by fixed long time delays, which directly leads to the functional limitation of application scenarios such as gravity matching. To address these challenges, a real-time gravity data processing method based on neural network fitting filtering was proposed in this investigation. By approximating the Finite Impulse Response (FIR) filter through neural network implementation, the long dependency on future data was effectively reduced, resulting in minimized time delays. Experimental verification demonstrated that the delay of the designed method was reduced by 93% compared with the FIR filter, significantly improving the real-time performance of data processing while maintaining a high accuracy, providing a solution for the real-time gravity measurement of the laser gyroscope inertial group gravity measurement system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-13
  • 最后修改日期:2025-04-27
  • 录用日期:2025-04-28
  • 在线发布日期:
  • 出版日期:
文章二维码