基于残差神经网络的进气道内收缩基准流场预测方法
DOI:
作者:
作者单位:

国防科技大学高超声速技术实验室

作者简介:

通讯作者:

中图分类号:

V228.7

基金项目:

国家自然科学基金项目(12102470,12372298);中国科协青年人才托举工程项目(YESS20230689)


Prediction method for internal compression basic flowfield in inlet based on ResNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高超声速内转进气道一般是采用流线追踪技术由内收缩基准流场设计得到,因此基准流场的设计优劣直接决定了进气道的性能指标。本文采用准均匀B样条方法实现内收缩基准流场的参数化设计,基于深度学习残差神经网络架构构建了进气道内收缩基准流场的快速预测模型,实现了“参数化设计-流场预测”的目的。结合图像质量评估方法对预测流场云图进行定量评价,并从中提取关键流场特性参数分布,以实现基于设计参数快速获取流场云图与特性参数分布的目标。研究结果表明,所构建的基准流场快速预测模型对给定几何参数对应的流场预测精度较高,其预测结果的整体流场平均峰值信噪比为42.51dB,平均结构相似性指数为0.9973,并能从预测结果中有效提取流场关键特性参数分布,为内收缩基准流场的快速设计与优化提供有力支持。

    Abstract:

    Hypersonic internal compression inlets are typically designed using streamline tracing technology based on the basic flowfield, and the quality of the basic flowfield design directly determines the performance metrics of the inlet. In this study, the quasi-uniform B-spline method is applied to achieve the parametric design of the internal compression basic flowfield. A fast prediction model for the internal compression basic flowfield is established based on the residual neural network architecture of deep learning, realizing the goal of "parametric design-flowfield prediction." The predicted flowfield cloud images are quantitatively evaluated using image quality assessment methods, and key flowfield characteristic parameter distributions are extracted to enable rapid acquisition of flowfield cloud images and characteristic parameter distributions based on design parameters. The results show that the developed basic flowfield fast prediction model achieves high prediction accuracy for flowfields corresponding to given geometric parameters. The average peak signal-to-noise ratio (PSNR) of the predicted total flowfield is 42.51 dB, and the average structural similarity index (SSIM) is 0.9973. Additionally, the model can effectively extract key flowfield characteristic parameter distributions from the predicted results, providing robust support for the rapid design and optimization of internal compression basic flowfield.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-14
  • 最后修改日期:2025-04-09
  • 录用日期:2025-04-10
  • 在线发布日期:
  • 出版日期:
文章二维码