基于深度强化学习的直线电机参数自适应自抗扰控制方法
作者:
作者单位:

海军工程大学

作者简介:

通讯作者:

中图分类号:

TM351

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Adaptive Active Disturbance Rejection Control Method for Linear Motor Parameters Based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文提出一种融合深度强化学习与改进粒子群优化的自适应自抗扰控制策略,旨在提升永磁同步直线电机的速度与推力控制性能。通过建立电机数学模型并分析其动态特性,设计基于深度强化学习粒子群优化(DRLPSO)的控制框架,利用强化学习中的奖励机制与环境交互,动态优化自抗扰控制器参数以应对运行条件变化及外部扰动。改进粒子群算法引入分区惯性权重机制,结合历史全局最优数据循环更新策略,优化神经网络权重,从而提高控制策略的搜索效率与优化精度。实验结果表明,相比传统粒子群优化自抗扰控制算法,所提方法显著提高了电机位置与速度跟踪精度,增强了系统稳定性及抗推力扰动能力,验证了创新策略的有效性。

    Abstract:

    This study presents an adaptive active disturbance rejection control strategy integrating deep reinforcement learning (DRL) with enhanced particle swarm optimization (PSO), aiming to improve the speed and thrust control performance of permanent magnet synchronous linear motors (PMSLMs). A mathematical model of the motor was established to analyze its dynamic characteristics, followed by the design of a DRL-PSO (DRLPSO) control framework. This framework leverages reward mechanisms in reinforcement learning to interact with the environment, dynamically optimizing ADRC parameters to accommodate varying operating conditions and external disturbances. The modified PSO algorithm incorporates partitioned inertia weights and cyclically utilizes historical global optimal data to iteratively update control policies, refining neural network weights and thereby enhancing search efficiency and optimization accuracy. Experimental results show that the proposed DRLPSO-ADRC method achieves significantly higher tracking precision in position and velocity, along with improved system stability and resistance to thrust disturbances, compared to conventional PSO-ADRC algorithms. These findings validate the effectiveness of the innovative control strategy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-26
  • 最后修改日期:2025-07-25
  • 录用日期:2025-04-28
  • 在线发布日期:
  • 出版日期:
文章二维码