动态武器目标分配的实时滚动优化
作者:
作者单位:

1.湖南理工学院 信息科学与工程学院;2.湖南民族职业学院

作者简介:

通讯作者:

中图分类号:

TJ765

基金项目:

湖南省自然科学基金(2024JJ5173, 2023JJ50047,);湖南省教育厅科学研究项目(23A0494);


Real-time Rolling Optimization of Dynamic Weapon Target Assignment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效应对战场环境中目标动态变化与突发事件,提出一种基于实时滚动机制的动态武器目标分配方法。建立了基于累积毁伤概率的分配模型和以最短作战完成时间为目标的武器调度模型。在算法方面,针对可用武器数目随时间变化的特点,提出了一种变长向量编码的离散粒子群算法(Variable Length Coding Discrete Particle Swarm Optimization, VLC-DPSO),通过复制最优解片段的方式进行离散寻优,并结合遗传算法优化武器调度序列,实现分配与调度的分层闭环优化。仿真实验表明,在小规模和大规模作战场景中,与传统遗传和粒子群算法相比,VLC-DPSO算法的分配方案打击效果更优,特别在大规模场景中优势明显。同时,随机引入新目标的实验验证了所提方法在应对战场突发事件时的良好适应性。

    Abstract:

    To effectively address dynamic target variations and emergencies in battlefield environments, a DWTA (dynamic weapon target assignment) method based on a real-time rolling mechanism was proposed. An allocation model based on the cumulative probability of destruction and a weapons scheduling model aiming at the shortest operational completion time were established. To adapt to the time-varying availability of weapons, a VLC-DPSO (variable length coding discrete particle swarm optimization) algorithm was introduced, utilizing discrete optimization through copying optimal solution segments. Moreover, a hierarchical closed-loop optimization of assignment and scheduling was achieved by integrating the genetic algorithm for weapon scheduling sequence optimization. Simulation experiments show that, compared with the traditional genetic algorithm and particle swarm optimization algorithm, the proposed VLC-DPSO algorithm achieves better strike effects in both small-scale and large-scale scenarios, especially showing significant advantages in large-scale scenarios. Furthermore, experimental scenarios with randomly introduced new targets verify the proposed method"s robust adaptability to battlefield emergencies.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-31
  • 最后修改日期:2025-12-02
  • 录用日期:2025-08-26
  • 在线发布日期:
  • 出版日期:
文章二维码