面向加速粒子输运随机模拟的概率可调真随机数生成器
DOI:
作者:
作者单位:

国防科技大学计算机学院

作者简介:

通讯作者:

中图分类号:

TP331.1

基金项目:

国家重点基础研究发展计划(2022YFB2803405),国家自然科学基金项目(62304257)


Probability tunable random number generator for random simulation of accelerated particle transport
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    粒子输运问题的随机模拟在传统冯·诺依曼架构上面临随机事件分支和不规则访存带来的挑战,其根源在于随机算法与确定性硬件之间的不匹配。为此,设计了一种基于自旋和铁电器件的概率可调真随机数生成器。基于自旋器件的物理随机性,为架构提供物理随机源,并通过优化的控制逻辑和写入机制提高随机比特吞吐率;基于铁电器件的忆阻特性,设计了可编程和能够非易失连续存储权重的概率可调突触。实验表明,该设计求解示例输运问题时性能相比通用处理器提高171~1028倍。进一步地,相较现有的基于自旋转移矩磁隧道结(spin-transfer torque magnetic tunnel junction, STT-MTJ)的真随机数生成器,其不仅唯一具有生成可调概率随机采样的能力,且产生均匀分布随机序列时吞吐率达到303Mb/s,具有更高的随机比特吞吐率。

    Abstract:

    Particle transport simulations using stochastic methods face significant challenges on conventional von Neumann architectures, particularly due to random branching events and irregular memory access patterns. These limitations stem from the fundamental mismatch between probabilistic algorithms and deterministic computing paradigms. To bridge the gap between architecture and algorithms, a probabilistically tunable true random number generator was developed based on spintronic and ferroelectric devices. The physical randomness of spintronic devices was leveraged to provide a physical random source for the architecture, and the throughput of random bits was enhanced through optimized control logic and writing mechanisms. Next, programmable synapses were designed based on the memristive properties of ferroelectric devices, enabling non-volatile continuous weight storage with tunable probabilities. The experimental results indicate that the proposed approach achieves performance improvements ranging from 171× to 1028× compared to a general-purpose CPU when solving a sample transport problem. Furthermore, compared to existing STT-MTJ-based (spin-transfer torque magnetic tunnel junction-based) true random number generators, the developed method not only enables tunable probability random sampling but also achieves a throughput of 303 Mb/s when generating uniformly distributed random sequences.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-01
  • 最后修改日期:2025-07-03
  • 录用日期:2025-07-15
  • 在线发布日期:
  • 出版日期:
文章二维码