时空归一化流的鲁棒多元时间序列异常检测方法
作者:
作者单位:

国防科技大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(61671233,61801208);国家部委基金资助项目(513040106)


Spatial-Temporal Normalizing Flow for Robust Multivariate Time Series Anomaly Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,智能物联网的快速发展推动了深度学习算法在物理信息系统异常检测中的广泛应用。在生产环境中,异常检测模型通常被部署用于监控传感器生成的多元时间序列,以识别系统异常。然而,现有的用于多元时间序列异常检测的深度学习模型容易受到训练集污染的影响,且难以有效建模多元时间序列中复杂的时空依赖关系,限制了这些模型的实际应用效果。针对上述问题,本文提出了一种基于时空归一化流的异常检测模型。该模型利用条件归一化流,对多元时间序列中的模式进行密度估计,从而实现对训练集污染鲁棒的异常检测。此外,本文提出了分块长短期记忆网络LSTM来学习多元时间序列中的长时时序依赖,并提出了一种基于注意力机制的动态图学习模块,用于建模多元时间序列不同维度间的动态关系。在三个真实物理信息系统数据集上的实验结果表明,本文提出的模型在检测性能和鲁棒性方面均优于当前最先进的基准方法。

    Abstract:

    Recent advancements in Artificial Intelligence of Things (AIoT) technologies have brought about an increasing popularity in leveraging deep learning algorithms to detect potential failures in cyber-physical systems (CPS). Typically, an anomaly detection model is deployed to monitor the multivariate time series (MTS) generated by sensors to identify abnormal operation states. However, the contemporary unsupervised deep learning models for MTS anomaly detection are susceptible to contamination in the training dataset and are incapable of capturing the spatial-temporal correlations in MTS, result in suboptimal practical detection performance. In this paper, we propose a novel framework called Spatial-Temporal Normalizing Flow (STNF) to tackle the above problems. Our framework extends the conditional normalizing flow for MTS density estimation, aiming to achieve robust anomaly detection against training dataset pollution. Additionally, we introduce a patched Long Short-Term Memory (LSTM) module to effectively learn robust representations of long-term dependencies within MTS. Moreover, a dynamic graph construction module is devised to model the complex and evolving correlations among different dimensions of MTS. We evaluate our approach on three real-world CPS datasets and report improvements over the state-of-the-art approaches in terms of both performance and robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-12
  • 最后修改日期:2025-11-24
  • 录用日期:2025-08-21
  • 在线发布日期:
  • 出版日期:
文章二维码