飞行器智能流场建模方法研究进展
DOI:
作者:
作者单位:

国防科技大学 先进推进技术实验室

作者简介:

通讯作者:

中图分类号:

V211.3

基金项目:

国家自然科学基金资助项目(12472338), 航空科学基金资助项目(20220014079001)


Research progress on intelligent flow field modeling method for aircraft
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能流场建模方法通过融合深度学习在特征提取与动态响应预测中的优势,以及在多学科设计优化架构中的创新潜力,已成为实现复杂流动系统高效建模与高维性能提升的核心驱动力。这一融合范式不仅强化了数据与物理机理的耦合,还可通过多目标优化机制为气动设计提供兼具计算效率与物理一致性的解决方案。本文从数据驱动方法与物理约束方法两方面综述了智能流场建模的已有研究成果,并指出其发展面临三大关键挑战:高保真数据获取、复杂边界几何特征表达以及鲁棒物理约束的构建。进一步地,本文展望了融合气动与多学科耦合效应的联合建模框架,或能通过多尺度物理信息嵌入与自适应优化机制,革新下一代飞行器多学科设计优化范式。这一研究为数据知识与物理机理的深度融合提供了新思路,旨在推动智能流场建模在航空航天等领域的跨学科创新。

    Abstract:

    Intelligent flow field modeling methods, by integrating the strengths of deep learning in feature extraction and dynamic response prediction with architectural innovations in multidisciplinary design optimization (MDO), have emerged as a core driver for achieving efficient modeling of complex flow systems and enhancing high-dimensional performance. This fusion paradigm not only strengthens the coupling between data and physics but also provides aerodynamics design with computationally efficient and physics-consistent solutions through multi-objective optimization mechanisms. This paper reviews recent advances in intelligent flow field modeling from two perspectives, namely data-driven approaches and physics-constraint approaches. Key challenges hindering progress include the acquisition of high-fidelity datasets, geometric feature representation, and robust physical constraints. Furthermore, we propose that joint modeling integrating aerodynamics with multidisciplinary coupling effects holds transformative potential for next aircraft MDO paradigms. By bridging data-driven flexibility and physics-based rigor, this work aims to inspire interdisciplinary innovations in intelligent flow field modeling.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-16
  • 最后修改日期:2025-07-03
  • 录用日期:2025-07-08
  • 在线发布日期:
  • 出版日期:
文章二维码