深度强化学习和负载中心性理论融合的分段路由优化算法
DOI:
作者:
作者单位:

1.国防科技大学计算机学院;2.长沙理工大学计算机学院;3.云南大学信息科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

:湖南省教育厅科研基金(23A0258);湖南省自然科学基金(2021JJ30736、2023JJ50331);长沙市自然科学基金 (kq2014112);国家自然科学基金(62272063)


Segment Routing Optimization Algorithm Fusing Deep Reinforcement Learning and Load Centrality Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结合软件定义网络(Software Defined Networking,SDN)与分段路由(Segment Routing,SR)可优化网络性能,但在大规模动态网络中,其关键节点链路利用率过高会导致的队列延迟激增。为此,提出深度强化学习(Deep Reinforcement Learning,DRL)与负载中心性理论融合的分段路由优化算法(SROD-LC)。通过负载中心性理论量化网络节点重要性,识别关键节点并监控其链路负载状态;利用多智能体强化学习框架,在关键节点部署分布式DRL智能体,通过共享奖励机制协调路由决策,实现链路负载的主动优化。同时结合SR的灵活性,动态调整段标识(Segment Identifier,SID)列表快速重路由部分流量,降低本地链路利用率并规避潜在拥塞。基于真实网络拓扑的模拟实验结果表明:当SR关键节点比例在0.3-0.5范围时,SROD-LC算法优化效果显著,与基准算法相比,可将网络最大链路利用率(Maximum Link Utilization , MLU)降低22%-35%。

    Abstract:

    Combining Software Defined Networking (SDN) and Segment Routing (SR) can optimize network performance, but in large-scale dynamic networks, excessive link utilization at key nodes can lead to a surge in queue delays. To address this, a Segment Routing Optimization Algorithm fusing Deep Reinforcement Learning (DRL) and Load Centrality Theory (SROD-LC) was proposed. By quantifying the importance of network nodes using load centrality theory, key nodes are identified and their link load states are monitored; utilizing a multi-agent reinforcement learning framework, distributed DRL agents are deployed at key nodes, coordinating routing decisions through a shared reward mechanism to achieve proactive optimization of link loads. At the same time, leveraging the flexibility of SR, the Segment Identifier (SID) lists are dynamically adjusted to quickly reroute partial traffic, reducing local link utilization and avoiding potential congestion. Simulation experiments based on real network topologies show that when the proportion of SR key nodes is in the range of 0.3-0.5, the SROD-LC algorithm exhibits significant optimization effects, reducing the network's Maximum Link Utilization (MLU) by 22%-35% compared to baseline algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-16
  • 最后修改日期:2025-08-30
  • 录用日期:2025-09-04
  • 在线发布日期:
  • 出版日期:
文章二维码