基于增强随机集成的混合核K近邻算法的基站网络流量预测
DOI:
作者:
作者单位:

1.东南大学 网络空间安全学院;2.东南大学 数学学院;3.华南理工大学信息网络工程研究中心

作者简介:

通讯作者:

中图分类号:

TP

基金项目:

广州市重点领域研发计划 2022年度“新一代信息技术”重大科技专项(No.202206070006)


Base Station Network Traffic Prediction Using an Enhanced Random Ensemble-Based Mixed Kernel -Nearest Neighbors Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向5G/6G超密集组网的基站网络流量预测需求,本研究提出了一种增强随机集成混合核K近邻算法(Enhanced random ensemble mixed kernel K nearest neighbor algorithm, ER-MKKNN)。通过融合径向基核与白噪声核构建混合核函数,突破了单一核函数在非线性关联建模与噪声抑制间的平衡瓶颈。创新性地引入样本-特征双重随机子采样与超参数区间随机化策略,显著提升了高维稀疏场景的泛化稳定性。基于袋外(Out of bag, OOB)误差反演的动态权重分配机制,提升了算法对流量突变的鲁棒响应能力。配套设计的多级并行化架构,为超密集组网提供了可扩展的预测解决方案。实验表明,ER-MKKNN在RMSE、MAPE和MAE三项指标上分别超越所对比深度学习模型4.6%、63.5%和8.6%,为智能网络运维提供了新的技术路径。

    Abstract:

    To address the demand for base-station traffic forecasting in ultra-dense 5G/6G deployments, this study proposes an Enhanced Randomly Mixed Kernel K-Nearest Neighbors algorithm (ER-MKKNN). By fusing a radial basis function kernel with a white-noise kernel into a hybrid kernel function, it overcomes the trade-off bottleneck between nonlinear relationship modeling and noise suppression inherent in single-kernel approaches. Innovatively introducing dual random subsampling on both samples and features, together with a randomized hyperparameter‐interval strategy, markedly improves generalization stability in high-dimensional, sparse scenarios. A dynamic weight‐allocation mechanism based on out-of-bag (OOB) error inversion enhances the algorithm’s robustness to abrupt traffic fluctuations. The accompanying multi-level parallel architecture offers a scalable prediction solution for ultra-dense network topologies. Experimental results show that ER-MKKNN outperforms the best deep-learning models by 4.6%, 63.5%, and 8.6% on RMSE, MAPE, and MAE, respectively, charting a new technical pathway for intelligent network operations and maintenance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-05
  • 最后修改日期:2025-09-11
  • 录用日期:2025-09-17
  • 在线发布日期:
  • 出版日期:
文章二维码