大模型智能体驱动的成像卫星任务规划算法离线设计与在线调度
作者:
作者单位:

1.国防科技大学 系统工程学院;2.中国空间技术研究院

作者简介:

通讯作者:

中图分类号:

C931

基金项目:

国家自然科学基金资助项目(U23B2039);中国科协青年人才托举工程(2022QNRC001


Offline Design and Online Scheduling for Imaging Satellite Mission Planning Algorithms Driven by Large Model Intelligent Agents
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升成像卫星应对常态化应急任务的调度效率,解决固定调度算法在复杂多变临时场景下性能不足及人工设计算法响应滞后问题,本研究提出一种大模型驱动的AI智能体协同框架。该框架将复杂调度问题分解为任务分配与单星规划两个子问题,并将算法设计过程拆分为初始算法生成与算法演化优化两个阶段。分解后形成的可执行元任务由多个智能体通过协同沟通自主完成最优算法设计。整个框架实现全自动、智能化运行,支持离线训练与在线无间断部署,保障应急任务的实时响应需求。实验验证表明,该框架自动生成的算法在求解质量与计算效率上均显著优于人类专家设计的算法。

    Abstract:

    To enhance the scheduling efficiency of imaging satellites for regular emergency scenarios (e.g., disaster warning, intelligence acquisition) and address the performance limitations of fixed scheduling algorithms in complex, dynamic situations and the lag associated with manual algorithm design, this study proposes a large language model (LLM)-driven AI agent collaboration framework. The framework decomposes the complex scheduling problem into two subproblems: task allocation and single-satellite planning. The algorithm design process is further divided into two phases: initial algorithm generation and evolutionary algorithm optimization. The resulting executable meta-tasks are autonomously completed by multiple agents through collaborative communication to design the optimal algorithm. The entire framework operates fully automatically and intelligently, supporting offline training and seamless online deployment to ensure real-time response capabilities for emergency tasks. Experimental results demonstrate that algorithms automatically generated by this framework significantly outperform those designed by human experts in both solution quality and computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-27
  • 最后修改日期:2025-12-16
  • 录用日期:2025-12-05
  • 在线发布日期:
  • 出版日期:
文章二维码