高度感知神经算子的空天过渡区风场预测模型研究
作者:
作者单位:

国防科技大学气象海洋学院

作者简介:

通讯作者:

中图分类号:

P49

基金项目:

国家自然科学基金(批准号:42275060、42405065、42474225和42305048),国防科技大学自主创新科学基金(批准号24-ZZCX-JDZ-45和25-ZZCX-BC-10)感谢中国科学院“西部之光”跨团队项目重点实验室合作研究项目的大力支持


Research on wind field prediction model in aerospace transition zone based on height-aware neural operator
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统数值预报在空天过渡区风场预测中计算效率低、多高度层物理特征建模不足的问题,提出高度感知傅里叶神经算子(height-aware Fourier neural operator,HAFNO)模型。该模型引入高度感知权重机制,能自适应区分不同高度层物理差异,并保持O(n log n)的低计算复杂度;同时构建了多高度层耦合预处理框架与融合空间梯度约束的自适应损失函数。基于MERRA-2数据的实验表明,HAFNO在50~70 km高度层的预测精度均优于ConvLSTM、DeepONet等基准模型,平均均方根误差较标准FNO降低12.8%,相关系数最高达0.994,可为空天过渡区环境保障提供高效的深度学习预测技术途径。

    Abstract:

    To address the issues of low computational efficiency and insufficient modeling of multi-altitude physical characteristics in traditional numerical prediction methods for the aerospace transition zone, a HAFNO (height-aware Fourier neural operator) model was proposed. A height-aware weighting mechanism was introduced to adaptively distinguish physical features across different altitude layers while maintaining O(n log n) computational complexity. Additionally, a multi-altitude coupled preprocessing framework and an adaptive loss function incorporating spatial gradient constraints were constructed. Experimental results based on MERRA-2 data demonstrate that HAFNO outperforms benchmark models such as ConvLSTM and DeepONet in the 50~70 km altitude range. The average RMSE (root mean square error) is reduced by 12.8% compared to the standard FNO, with a maximum correlation coefficient of 0.994, providing an efficient deep learning technical approach for environmental forecasting in the aerospace transition zone.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-22
  • 最后修改日期:2025-12-19
  • 录用日期:2025-12-03
  • 在线发布日期:
  • 出版日期:
文章二维码