人工智能赋能空天过渡区战场环境信息应用、对抗与挑战
DOI:
作者:
作者单位:

国防科技大学 气象海洋学院

作者简介:

通讯作者:

中图分类号:

V19

基金项目:

国家自然科学基金资助项目(42275060、42405065、42474225和42305048);国防科技大学自主创新科学基金(24-ZZCX-JDZ-45和25-ZZCX-BC-10)第一作者:盛峥(1983—),男,江西南昌人,教授,博士,博士生导师,E-mail:19994035@sina.com通信作者:宋君强(1962—),男,湖南长沙人,教授,博士,博士生导师,E-mail:junqiang@nudt.edu.cn引用格式:Citation:


Artificial Intelligence-Empowered Applications, Countermeasures, and Challenges in Battlefield Environment Information for Aviation and Aerospace Transition Zones
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    空天过渡区(aviation and aerospace transition zone,AATZ)位于50–250 km高度区间,是高超音速武器突防与电子战博弈的战略要域,更是影响作战效能的关键战场。人工智能(artificial intelligence,AI)正深度赋能该区域的信息对抗体系,推动其向动态化、智能化演进。本文系统综述了AI在“感知—融合—预测—对抗”全链条中的关键技术与应用:依托深度学习实现环境参数的高效反演;利用智能融合构建战场环境数字孪生;借助物理信息提升预报精度;发展自主学习与博弈决策能力,支撑精准认知与抗干扰。同时,本文聚焦于AI赋能下信息对抗中的核心难题:环境感知不确定性、模型可解释性弱、跨域迁移困难与数据获取受限等。最后,对未来发展方向进行了展望,并强调AI正从技术工具演变为核心驱动力。

    Abstract:

    The aviation and aerospace transition zones (AATZ), spanning altitudes between 50–250 km, constitutes a strategic arena for hypersonic weapon penetration and electronic warfare operations, serving as a critical battlefield that significantly impacts operational effectiveness. Artificial intelligence (AI) is profoundly empowering the region's information warfare systems, driving their evolution toward dynamic and intelligent capabilities. Key AI technologies and applications across the entire “perception-fusion-prediction-countermeasure” chain are systematically reviewed: relying on deep learning for efficient inversion of environmental parameters; utilizing intelligent fusion to construct digital twins of battlefield environments; enhancing forecast accuracy through physical information; and developing autonomous learning and game-theoretic decision-making capabilities to support precise cognition and counter-interference. AI-enabled environmental information deception and counter-deception confronts four intertwined bottlenecks: inherent uncertainty in multi-source perception, feeble interpretability of deep predictive models, poor cross-domain transferability under heterogeneous conditions, and scarcity of realistic training data. The core challenges facing AI-enabled information warfare include environmental perception uncertainty, weak model interpretability, difficulties in cross-domain transfer, and restricted data acquisition. Finally, the outlook for future development is presented, emphasizing that AI is evolving from a technical tool into a core driving force.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-15
  • 最后修改日期:2025-12-11
  • 录用日期:2025-12-16
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码