跨马赫数条件下的转捩位置迁移学习预测
DOI:
作者:
作者单位:

1.北京理工大学 爆炸科学与安全防护全国重点实验室;2.中国航天空气动力技术研究院;3.北京理工大学 临近空间环境特性及效应全国重点实验室

作者简介:

通讯作者:

中图分类号:

V211

基金项目:

国家自然科学基金资助项目(12372215,12325206,12441202)


Transfer-learning prediction of transition location under cross-Mach number conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对不同马赫数下平板边界层转捩位置的预测问题,开展小样本条件下的高效预测方法研究。利用非线性抛物化稳定性方程生成大量流动转捩数据,以Ma = 0.01的样本作为源域,Ma = 0.1、0.2、0.4、0.8和1.6的样本作为目标域,系统分析不同马赫数对转捩图案的影响。基于卷积神经网络,构建流场图案与转捩位置的映射关系,并采用渐进式解冻结合分层学习率的迁移学习策略。结果表明,迁移学习显著优于直接训练:在Ma ≤ 0.4时,仅需目标域1/10的样本即可实现平均绝对误差低于真实值均值的2.04%;在Ma ≥ 0.8条件下,通过渐进式领域适应策略可将误差控制在6.19%以内。该方法有效提升了小样本条件下的转捩预测能力,为跨工况流动转捩预测提供了技术路径。

    Abstract:

    To predict the boundary-layer transition location over a flat plate across varying Mach numbers, an efficient method is developed for small-sample settings. Flow-field disturbance datasets across multiple Mach numbers were generated using the nonlinear parabolized stability equations (NPSE), with Ma = 0.01 designated as the source domain and Ma = 0.1, 0.2, 0.4, 0.8 and 1.6 as target domains. The influence of Mach number variations on transition patterns was systematically analyzed. A convolutional neural network (CNN) model was employed to map flow field patterns to transition locations, incorporating a transfer learning strategy with progressive unfreezing and layer-wise learning rates. Results demonstrate that transfer learning significantly outperforms direct training: for Ma ≤ 0.4, only 1/10 of the target domain samples are required to achieve a mean absolute error below 2.04% of the average ground-truth value; for Ma ≥ 0.8, a progressive domain adaptation strategy controls the error within 6.19%. The approach enhances transition prediction under small-sample conditions and provides a reliable technical pathway for cross-condition flow modeling.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-15
  • 最后修改日期:2025-12-08
  • 录用日期:2025-12-18
  • 在线发布日期:
  • 出版日期:
文章二维码