生成式人工智能赋能无线电频谱认知:进展与挑战
DOI:
作者:
作者单位:

1.北京大学深圳研究生院;2.北京大学

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

广东省基础与应用基础研究重大项目(2023B0303000019);国家自然科学基金资助项目(62401025)


Generative Artificial Intelligence Assisted Radio Spectrum Cognition: Advances and Challenges
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,生成式人工智能凭借其强大的数据分布拟合能力及数据生成补全能力,逐渐被引入无线电频谱认知领域,相较于传统依赖物理建模、数学插值以及判别式人工智能的方法,大幅提升了认知准确度。本文系统梳理了生成式人工智能赋能无线电频谱认知的研究进展,重点分析了不同生成范式的技术原理、应用场景及代表性工作,并深入探讨了训练数据稀缺、未知场景泛化能力不足、模型可解释性有限等生成式人工智能用于无线电频谱认知时面临的挑战。未来,通过跨模态知识融合、物理机理嵌入、可信评估构建,生成式人工智能有望推动无线电频谱认知向高精度、强泛化、可解释方向发展,有效支撑频谱资源高效利用。

    Abstract:

    In recent years, generative artificial intelligence is progressively introduced into the field of radio spectrum cognition due to its powerful capabilities in data distribution fitting, data generation, and data completion. Compared to conventional approaches rely on physical modeling, mathematical interpolation, and discriminative artificial intelligence techniques, generative AI has significantly enhanced the accuracy of radio spectrum cognition. This paper systematically reviewed the research progress of generative artificial intelligence in radio spectrum cognition, with a focused analysis on the technical principles, application scenarios, and representative works of different generative paradigms. The challenges faced by generative AI in spectrum cognition were further discussed, including scarce training data, limited generalization in unknown scenarios, and insufficient model interpretability. In the future, by cross-modal knowledge fusion, physics-informed embedding, and the establishment of a trustworthy assessment framework, generative artificial intelligence is expected to advance radio spectrum cognition toward high precision, robust generalization, and enhanced interpretability, thereby effectively supporting the efficient utilization of spectrum resources.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-17
  • 最后修改日期:2026-01-22
  • 录用日期:2026-01-26
  • 在线发布日期:
  • 出版日期:
文章二维码