大数据知识融合基础及研究进展综述
DOI:
作者:
作者单位:

1.国防科技大学 大数据与决策国家级重点实验室;2.国防科技大学 信息系统工程全国重点实验室

作者简介:

通讯作者:

中图分类号:

TP182

基金项目:

国家自然科学基金项目(U25B2047,U23A20296,62272469,62302513),湖南省科技创新计划项目(2023RC1007)


Survey on Foundations and Research Progress of Big Data Knowledge Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在大数据智能化时代,知识已成为驱动技术发展的根源动力。大数据知识融合通过关联多源碎片化数据构建统一知识体系,是增强知识完备性、提升认知智能水平的关键支撑。立足于基本范式与经典方法,系统归纳了知识表示学习、知识对齐匹配及知识冲突消解三大关键环节的研究现状。同时,深入探讨了大数据背景下的新进展,涵盖时序知识融合、跨模态知识融合及大语言模型知识融合等前沿方向。在此基础上,展望未来发展趋势,重点分析了符号化与参数化知识融合、跨模态时序知识融合等潜在研究问题。全景式梳理基础环节与新兴范式,旨在为大数据知识融合领域的理论扩展与技术演进提供重要借鉴与指导。

    Abstract:

    In the era of big data intelligence, knowledge has become the fundamental driving force for technological development. Big data knowledge fusion, which constructs a unified knowledge system by associating multi-source fragmented data, serves as a key support for enhancing knowledge completeness and improving cognitive intelligence. Based on basic paradigms and classic methods, the research status of three key links—knowledge representation learning, knowledge alignment matching, and knowledge conflict resolution—was systematically summarized. Meanwhile, new progress in the context of big data was deeply explored, covering frontier directions such as temporal knowledge fusion, cross-modal knowledge fusion, and large language model knowledge fusion. Furthermore, future development trends were prospected, and potential research issues, including the fusion of symbolic and parametric knowledge as well as cross-modal temporal knowledge fusion, were highlighted. Through a panoramic review of basic links and emerging paradigms, important reference and guidance are provided for theoretical expansion and technological evolution in the field of big data knowledge fusion.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-27
  • 最后修改日期:2026-01-30
  • 录用日期:2026-02-03
  • 在线发布日期:
  • 出版日期:
文章二维码