低空无人飞行器绝对视觉定位技术综述
DOI:
作者:
作者单位:

1.国防科技大学 空天科学学院;2.图像测量与视觉导航湖南省重点实验室

作者简介:

通讯作者:

中图分类号:

V19;TP751

基金项目:

国家自然科学基金资助项目(12472189);


A Survey on Absolute Visual Localization for Low-Altitude Unmanned Aerial Vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献()
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低空无人飞行器在全球卫星导航系统(GNSS)拒止环境下自主定位的迫切需求,本文系统综述了基于“检索-匹配-位姿解算”框架的飞行器绝对视觉定位技术。文章首先讨论了低空观测带来的成像差异、场景尺度变化和地物遮挡等问题,阐明了该分层定位框架在解决大范围、长航时定位问题上的技术优势。在此基础上,分别从跨视角图像检索、像素级特征匹配及飞行器位姿估计三个核心模块,系统梳理了从传统手工特征到深度学习范式的技术发展趋势与研究现状。最后,结合机载边缘计算平台的部署需求,分析了现有技术局限并展望了未来研究方向。本综述可为低空飞行器绝对视觉定位的技术研究与工程应用提供参考。

    Abstract:

    Addressing the critical need for autonomous navigation of low-altitude unmanned aerial vehicles (UAVs) in Global Navigation Satellite System (GNSS)-denied environments, this paper presents a comprehensive survey on absolute visual localization techniques based on a "retrieval-matching-pose estimation" framework. It begins by analyzing the challenges inherent to low-altitude UAV observation, such as significant imaging disparities, rapid scene scale variations, and object occlusions, there by elucidating the advantages of the hier-archical framework for large-scale, long-endurance localization tasks. Subsequently, the review systematically examines the technological evolution and current state-of-the-art across three core components: cross-view image retrieval, pixel-level feature matching, and UAV pose estimation, tracing the progression from traditional handcrafted features to deep learning paradigms. Finally, considering the requirements for deployment on airborne edge-computing platforms, the paper discusses the limitations of existing technologies and outlines promising future research directions. This survey is intended to serve as a valuable reference for both research and practical applications in absolute visual localization for low-altitude UAVs.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-15
  • 最后修改日期:2026-01-20
  • 录用日期:2026-01-28
  • 在线发布日期:
  • 出版日期:
文章二维码