引用本文: | 蒋增荣.用快速多项式变换(FPT)计算二维离散富里叶变换(DFT).[J].国防科技大学学报,1982,(4):71-88.[点击复制] |
Jiang Zengrong.Computation of Two Dimensional Discrete Fourier Transforms (DFT) Using Fast Polynomial Transforms (FPT)[J].Journal of National University of Defense Technology,1982,(4):71-88[点击复制] |
|
|
|
本文已被:浏览 5405次 下载 5291次 |
用快速多项式变换(FPT)计算二维离散富里叶变换(DFT) |
蒋增荣 |
()
|
摘要: |
本文利用快速多项式变化(FPT)计算N×M型二维DFT(M=2m,N=2m-r+1,1≤r≤m),所需的乘法及加法次数(复乘及复加)分别为Mu=1/2NMlog2M-3/2NM+N2+N(1+log2M-log2N)
Ad=NMlog2NM,与通常的以2为基的二维FFT比较,加法次数相同,乘法次数减少约30-40%,从而提高了计算精度。本算法还适用于并行算法。 |
关键词: |
DOI: |
投稿日期:1981-12-20 |
基金项目: |
|
Computation of Two Dimensional Discrete Fourier Transforms (DFT) Using Fast Polynomial Transforms (FPT) |
Jiang Zengrong |
Abstract: |
In this paper,a fast algorithm is developed to compute two-dimensional Discrete Fourier Transform (DFT) of an array of NxM complex number points using FPT,where M=2m,N=2m-r+1,1≤r≤m.As compared with the conventional radix-2 two-dimensional Fast Fourier Transforms,this new algorithm requires less number of multiplications (decrease by 30-40%) and same number of additions, so that elevates the computing accuracy. The number of multiplications and additions are respectively
Mu=1/2NMlog2M-3/2NM+N2+N(1+log2M-log2N)
Ad= NMlog2MN.
This algorithm also has the advantage to adopt the parallel algorithm. |
Keywords: |
|
|