引用本文: | 蒋增荣.用快速多项式变换 (FPT) 计算二维 DFT的混合算法.[J].国防科技大学学报,1983,(4):89-100.[点击复制] |
Jiang Zengrong.A Mixed Algorithm for the Computation of Two-Dimensional DFT Using Fast Polynomial Transforms[J].Journal of National University of Defense Technology,1983,(4):89-100[点击复制] |
|
|
|
本文已被:浏览 5222次 下载 5535次 |
用快速多项式变换 (FPT) 计算二维 DFT的混合算法 |
蒋增荣 |
()
|
摘要: |
本文首先提出用多项式逆变换计算二维DFT的方法 (k2 是奇数或偶数分别讨论),然后再讨论混合算法。对于N×N(N=2t) 二维D F T,混合算法所需的运算量为
Mu=?N2log2N—?N2+N
Ad=2N2log2N
与通常以2为基的二维 F F T (行列算法〉比较,加法次数相同,乘法次数减少约20-40%。 |
关键词: |
DOI: |
投稿日期:1983-01-26 |
基金项目: |
|
A Mixed Algorithm for the Computation of Two-Dimensional DFT Using Fast Polynomial Transforms |
Jiang Zengrong |
Abstract: |
In this paper,first,We introduce a methed for computation of two-dimensional DFT by inverse Polynomial Transforms (When k2 is odd or oven,We discuss respectively). Then We develop mixed algorithm to compute two-dimensional DFT,the arithmetic operand of this technique for the N×N(N=2t) two-dimensional DFT is Mu=?N2log2N—?N2+N
Ad=2N2log2N. As Compared with the conventional radix-2 two-dimensional FFT,this mixed algorithm requires less number of multiplications (decrease by 20-40%) and same number of additions. |
Keywords: |
|
|