引用本文: | 李永乐.方差分量的Bayes二次无偏估计及可容许估计的非负性.[J].国防科技大学学报,1990,12(3):50-57 ,75.[点击复制] |
Li yongle.Bayes Quadratic Unbiased Estimates of Variance Components and Nonnegativity of Admissible Estimates[J].Journal of National University of Defense Technology,1990,12(3):50-57 ,75[点击复制] |
|
|
|
本文已被:浏览 5985次 下载 6020次 |
方差分量的Bayes二次无偏估计及可容许估计的非负性 |
李永乐 |
(系统工程与应用数学系)
|
摘要: |
对于有P个方差分量的线性模型,本文导出了方差分量线性函数的Bayes不变二次无偏估计的显示表达式,证明了Bayes不变二次无偏估计类形成了可容许的不变二次无偏估计的完全类。在可容许的不变二次无偏估计类中,讨论了非负参数函数的非负估计问题,给出了可容许的非负定估计存在的充要条件。 |
关键词: 数理统计,估计理论,方差分量,Bayes不变二次无偏估计,可容许性,非负估计,椭球等高分布 |
DOI: |
投稿日期:1988-12-16 |
基金项目: |
|
Bayes Quadratic Unbiased Estimates of Variance Components and Nonnegativity of Admissible Estimates |
Li yongle |
(Department of Applied Mathematics and System Engineering)
|
Abstract: |
In this paper,1inear models with p variance components are considered and the explicit and easy computable expressions for Bayes invariant quadratic unbiased estimates (BAIQUE's) are presented. The class of BAI-QUE's is proved to form the entire class of admissible invariant quadratic unbiased estimates. A necessary and sufficient condition for the existence of admissible nonegative definte quadratic unbiased estimates is given. |
Keywords: mathematical statistics,estimation theory,variance components,Bayes invariant quadratic unbiased estimation,admissibility,nonnegative estimation,elliptically contoured distribution |
|
|