引用本文: | 金治明.最小、最大广义最优停止规则的特征.[J].国防科技大学学报,1990,12(3):58-62.[点击复制] |
Jin Zhiming.On the Character of the Smallest and Largest Optimal Generated Rule[J].Journal of National University of Defense Technology,1990,12(3):58-62[点击复制] |
|
|
|
本文已被:浏览 5702次 下载 5518次 |
最小、最大广义最优停止规则的特征 |
金治明 |
(系统工程与应用数学系)
|
摘要: |
设(Xn,?n)∞1是适应的报酬序列,(γn)是相应的snell包,(A n)是 (γn)的Doob-Meyer 分解中零初值的可料增过程。本文继J. Klass的研究证明了σ1=inf{K≥1:Xk≥γk}是最小半最优的且是最大严格正则的广义规则,而K0=sup{n≥0:An=0}<∞是最大正则的广义规则,从而得出了广义最优规则唯一性的另一表述。 |
关键词: 随机过程,马尔可夫过程,最优化,广义最优停止规则,半最优,严格正则 |
DOI: |
投稿日期:1988-06-30 |
基金项目: |
|
On the Character of the Smallest and Largest Optimal Generated Rule |
Jin Zhiming |
(Department of Applied Mathematics and System Engineering)
|
Abstract: |
Assume that (Xn,?n)∞1 is an adapted reward sequence, (γn)∞1) is snell's envelope of Xn,(An) is a predictable increased process with A0=0 in Doob-Meyer's decomposition of (γn). In this paper,from J. Klass,we prove that σ1=inf{K≥1:Xk1≥γk} is the smallest semi-optimal and the largest strong regular generalized rule,and K0?sup{n≥0:An=0}<∞ is the largest reqular generalized rule. Hence another expression of the uniqueness of optimal generalized rule is given. |
Keywords: random process,Markov process,optimization,optimal generalized rule,semi-optimal,strong reqular rule |
|
|