引用本文: | 李晓梅,王宏斌,赵自春.正切函数的契比协夫逼近及其系数的加速计算法.[J].国防科技大学学报,1990,12(4):33-42.[点击复制] |
Li Xiaomei,Wang Hongbin,Zhao Zichun.Chebyshev Approximation of Tangent functions and the Accelerated Computional Method of the Coefficients of the Tangent Functions[J].Journal of National University of Defense Technology,1990,12(4):33-42[点击复制] |
|
|
|
本文已被:浏览 5747次 下载 5673次 |
正切函数的契比协夫逼近及其系数的加速计算法 |
李晓梅, 王宏斌, 赵自春 |
(计算机系)
|
摘要: |
本文给出正切函数的有理展开和契比协夫展开式系数的加速计算方法,同时在 YH-1 机上进行了数值试验,结果表明:用现在的系数来计算正切函数,其精度比原来正切函数的精度可提高30%左右。 |
关键词: 逼近法,函数,绝对误差,相对误差/数值计算,契比协夫多项式 |
DOI: |
投稿日期:1989-07-28 |
基金项目: |
|
Chebyshev Approximation of Tangent functions and the Accelerated Computional Method of the Coefficients of the Tangent Functions |
Li Xiaomei, Wang Hongbin, Zhao Zichun |
(Department of Computer Science)
|
Abstract: |
The rational and Chebyshev approximation polynomials of tangent are given. The acceleratd computational methods of the Chebyshev coefficients are also presented. The experimental results on the YH-l super-computer show that using the coefficients with this accelerated,method. the accuracy can be increased by 30% compared with the original confficients. |
Keywords: approximation method,function,absolute,error,re1ative error/numerical evaluation,Chebyshev polynomial |
|
|