引用本文: | 陈庆华,李建平.线性分式规划原始单纯形算法有限性问题.[J].国防科技大学学报,1993,15(2):66-71.[点击复制] |
Chen Qinghua,Li Jianping.On Finitness of the Primal Simplex Algorithm of Linear Fractional Programming[J].Journal of National University of Defense Technology,1993,15(2):66-71[点击复制] |
|
|
|
本文已被:浏览 5902次 下载 5371次 |
线性分式规划原始单纯形算法有限性问题 |
陈庆华, 李建平 |
(系统工程与应用数学系)
|
摘要: |
本文用一个数值例子说明用 [l] 和 [2] 中的原始单纯形算法求解退化的线性分式规划 (LFP) 可能会出现基循环,从而得不到最优解。于是就此情形引入了Bland 规则,并建立了有限性算法。 |
关键词: 线性分式规划,最优性条件,单纯形算法,Bland 规则 |
DOI: |
投稿日期:1992-04-08 |
基金项目: |
|
On Finitness of the Primal Simplex Algorithm of Linear Fractional Programming |
Chen Qinghua, Li Jianping |
(Department of System Engineering and Applied Mathematics)
|
Abstract: |
In this paper,a numerical example of linear fractional programming (LFP) has been constructed in which a finite sequence of degenerate bases obtained by the LFP's primal simplex algorithm in referenes [1] and [2] may yield basis cycling and hence no optimum solution could be got. So,We propose the finite algorithm using Bland's rule. |
Keywords: linear fractional programming,optimality condition,simplex algorithm,Bland's rule |
|
|