引用本文: | 王文仲,方逵.保凸均匀三次B样条插值曲线.[J].国防科技大学学报,1994,16(4):84-87.[点击复制] |
Wang Wenzhong,Fang Kui.Convex Preserving Uniform Cubic B-spline Interpolation Curve[J].Journal of National University of Defense Technology,1994,16(4):84-87[点击复制] |
|
|
|
本文已被:浏览 6234次 下载 6516次 |
保凸均匀三次B样条插值曲线 |
王文仲, 方逵 |
(国防科技大学 系统工程与数学系 湖南 长沙 410073)
|
摘要: |
均匀三次B样条曲线虽然具有保凸性,但曲线不通过任何控制顶点,我们在相邻两个控制点之间插入两个新的控制顶点后,所产生的新的均匀三次B样条曲线不但插值原来所有控制顶点,而且还保凸。本文描述的曲线可以作局部修改,给出了两个数值例子。 |
关键词: 计算几何 B样条曲线 保凸插值 |
DOI: |
投稿日期:1994-05-03 |
基金项目: |
|
Convex Preserving Uniform Cubic B-spline Interpolation Curve |
Wang Wenzhong, Fang Kui |
(Department of System Engineering and Mathematics,NUDT,Changsha,410073)
|
Abstract: |
Althrough uniform B-spline has convexity-preserving property,the curve doesn't in terpolate any control points. If we insert two new contrl points between two cosecute coutrol points,the new points will merge the old points to form a new set of control points. we show that cubic B-spline curve generated by the new set of points interpolates all old control points,and the interpolating curve is convexity, preserving. The local modifications of the curve are possible. Finally,two numerical examples are given. |
Keywords: computional geometry B-spline curve,convexity preserving interpolation |
|
|