引用本文: | 宋小全,皇甫堪,周良柱.基于自组织神经网络的雷达信号分选.[J].国防科技大学学报,1995,17(4):36-42.[点击复制] |
Song Xiaoquan,Huangfu Kan,Zhou Liangzhu.Radar signal Classification Based on a self-organized probabinistic Neural Network[J].Journal of National University of Defense Technology,1995,17(4):36-42[点击复制] |
|
|
|
本文已被:浏览 6655次 下载 1025次 |
基于自组织神经网络的雷达信号分选 |
宋小全, 皇甫堪, 周良柱 |
(国防科技大学 电子技术系 湖南 长沙 410073)
|
摘要: |
本文介绍了一种基于自组织神经网络的雷达信号分选系统,概率神经网络通过计算输入信号矢量的联合概率密度实现贝叶斯分选,它与传统的信号分选算法相比在分选精度和资源利用率上有显著的提高。这种并行的神经网络计算结构也很适合于VLSI实现。本文还介绍了此系统在复杂雷达信号环境下的仿真分选试验。 |
关键词: 神经网络,信号处理,雷达 |
DOI: |
投稿日期:1995-06-21 |
基金项目: |
|
Radar signal Classification Based on a self-organized probabinistic Neural Network |
Song Xiaoquan, Huangfu Kan, Zhou Liangzhu |
(Department of Electronic Technology)
|
Abstract: |
Based on a self-organized probabilistic neural network (PNN) paradim, a parallel network can be used to sort data parameters into classes with high sorting accuracy and fragmentation. The PNN implements the statistical Bayesian strategy by computing a joint probability density over all input parameters to match a group of candidate data classes, the sorting is accomplished by assigning the inputs to most likely group with highest probabílity density estimate. Then the prospect of applying the self-organized PNN to ESM pulse data sorting will be shown,and a system including self-organized PNN and pulse repeating interval sorting will be discussed under the limited conditions of the sorting after lots of emulated experiments. |
Keywords: neural network,signal processing,radar |
|
|