引用本文: | 李弼程,罗建书,金治明.连续情形的窃贼问题.[J].国防科技大学学报,1996,18(1):103-109.[点击复制] |
Li Bicheng,Luo Jianshu,Jin Zhiming.A Continuous-time Theft Problem[J].Journal of National University of Defense Technology,1996,18(1):103-109[点击复制] |
|
|
|
本文已被:浏览 5816次 下载 6233次 |
连续情形的窃贼问题 |
李弼程, 罗建书, 金治明 |
(国防科技大学 系统工程与数学系 湖南 长沙 410073)
|
摘要: |
讨论了连续时间上的窃贼问题。Jt是 [0,t] 上窃贼作案的次数, {Jt}t≥0是 Poisson 过程;收获过程与风险过程都是独立同分布的时间序列。利用弱无穷小算子,我们找出了最优停时规则。 |
关键词: 最优停时规则,马氏过程,弱无穷小算子,窃贼问题 |
DOI: |
投稿日期:1995-09-18 |
基金项目:国家自然科学基金资助项目 |
|
A Continuous-time Theft Problem |
Li Bicheng, Luo Jianshu, Jin Zhiming |
(Department of System Engineering and Mathematics NUDT,Changsha,410073)
|
Abstract: |
In this paper,we discuss the theft problem in continuous time. Jtis the theft number of [0,t] and {Jt}t≥0 is a Poisson process. Profit process and risk process are all i. i. d time series. We find optimal stopping rules by using the weak infinitesimal generator of markov process. |
Keywords: optimal stopping rule,morkov process,weak infinitesimal generator,theft problem |
|
|
|
|
|