引用本文: | 郭欣,王润生.基于多特征的图象目标识别分类.[J].国防科技大学学报,1996,18(3):73-77.[点击复制] |
Guo Xin,Wang Runsheng.Image Recognition and Classification Based on Multi-feature[J].Journal of National University of Defense Technology,1996,18(3):73-77[点击复制] |
|
|
|
本文已被:浏览 6391次 下载 6346次 |
基于多特征的图象目标识别分类 |
郭欣, 王润生 |
(国防科技大学 图书馆 湖南 长沙 410073)
|
摘要: |
文中研究将多特征信息融合技术用于图象目标识别分类的方法,利用图象灰度表面的分形特征与图象的熵特征(非分形特征)所提供的信息进行融合处理,在决策层中运用Dempster-Shafer 证据推理理论,并使用决策规则对目标进行分类。在实验中,将经过信息融合分类的结果与单特征独自分类的结果进行比较。结果表明,多特征信息融合的目标识别方法具有良好的稳定性.准确性和可靠性,能够有效地提高图象分类识别系统的粘确度与容错性。 |
关键词: 特征提取,目标识别与分类,Dempster-Shafer 证据推理 |
DOI: |
投稿日期:1996-03-12 |
基金项目: |
|
Image Recognition and Classification Based on Multi-feature |
Guo Xin, Wang Runsheng |
(Library of NUDT, Changsha,410073)
|
Abstract: |
Multi-feature fusion technique is used to recognize and classify the image target in this paper. We extract the fractal feature and gray entropy from the image,then use Dempster-Shafer's Evidential Reasoning to fuse the information at the report level. Some decision strategies are used to recognize and classify the image. In experiment,we compare the results obtained from Multi-feature fusion with those obtained from single feature. The final results indicate that the Multi-feature fusion method is stable,reliable,and can efficiently improve the accuracy and the ability of fault tolerance. |
Keywords: feature extract,target recognition and c1assification,Dempster Shafer's Evidential Reasoning |
|
|