引用本文: | 李冬冬,杜耀华,王正志.一种针对基因识别的GHMM简化算法.[J].国防科技大学学报,2004,26(4):103-106.[点击复制] |
LI Dongdong,DU Yaohua,WANG Zhengzhi.A Simplified Algorithm to GHMM for Gene Finding[J].Journal of National University of Defense Technology,2004,26(4):103-106[点击复制] |
|
|
|
本文已被:浏览 6859次 下载 5767次 |
一种针对基因识别的GHMM简化算法 |
李冬冬, 杜耀华, 王正志 |
(国防科技大学 机电工程与自动化学院,湖南 长沙 410073)
|
摘要: |
广义隐Markov模型是计算机基因识别的一种重要模型,它克服了传统隐Markov模型的状态段长成几何分布的缺陷,更加适合于计算机基因识别。其缺点在于计算量大,需要采用有效的简化算法。利用基因的结构特点,在不附加额外限制条件的情况下,提出了一种新的简化算法,其计算复杂度是序列长度的线性函数。对实际生物序列数据的测试结果表明了此简化算法的有效性。 |
关键词: 广义隐Markov模型 Viterbi算法 基因识别 |
DOI: |
投稿日期:2004-03-15 |
基金项目:军队基础研究项目(JC-02-03-021) |
|
A Simplified Algorithm to GHMM for Gene Finding |
LI Dongdong, DU Yaohua, WANG Zhengzhi |
(College of Mechatronics Engineering and Automation, National Univ.of Defense Technology, Changsha 410073,China)
|
Abstract: |
The generalized hidden Markov model (GHMM) is an important model for computational gene finding. Compared with the traditional hidden Markov model (HMM), GHMM needn't the assumption that the length of each state is geometrical distribution, while it is necessary for HMM. This property is appropriate for computational gene finding. The demerit of GHMM is its high computational complexity, which hinders it from being used practically. According to the characteristic of gene's structure, a novel simplified algorithm is proposed without any additional assumptions, and its computational complexity is linear with the length of sequence. The testing result for biological data demonstrates that the simplified algorithm is effective. |
Keywords: generalized hidden Markov model Viterbi algorithm gene finding |
|
|