引用本文: | 蒋艳凰,杨学军.基于搜索编码的简单贝叶斯分类方法.[J].国防科技大学学报,2004,26(5):63-69.[点击复制] |
JIANG Yanhuang,YANG Xuejun.A Bayesian Learning Algorithm Based on Search-Coding Method[J].Journal of National University of Defense Technology,2004,26(5):63-69[点击复制] |
|
|
|
本文已被:浏览 6696次 下载 6044次 |
基于搜索编码的简单贝叶斯分类方法 |
蒋艳凰, 杨学军 |
(国防科技大学 计算机学院,湖南 长沙 410073)
|
摘要: |
简单贝叶斯法性能稳定,分类精度难以提高。通过分析搜索编码法产生的纠错输出码的性质,提出基于搜索编码的简单贝叶斯算法SCNB,并详细阐述了SCNB算法的应用流程。实验结果表明,采用搜索编码法能够有效提高简单贝叶斯分类器的泛化能力。 |
关键词: 监督分类 简单贝叶斯算法 纠错输出码 搜索编码法 |
DOI: |
投稿日期:2004-08-06 |
基金项目:国家杰出青年科学基金资助项目(69825104) |
|
A Bayesian Learning Algorithm Based on Search-Coding Method |
JIANG Yanhuang, YANG Xuejun |
(College of Computer, National Univ. of Defense Technology, Changsha 410073,China)
|
Abstract: |
Naǐve-Bayes algorithm is a stable supervised learning method, and it is difficult to improve its predicting accuracy. This paper analyzes the properties of the error-correcting output codes generated by search-coding method at first, then presents a search coding based on vaǐve Bayes algorithm (SCNB), and describes the flow chart of SCNB in detail. Experimental results show that search-coding method is an efficient approach to improve the generalization for Bayesian classifiers. |
Keywords: supervised classification Naǐve-Bayes algorithm error-correcting output code (ECOC) search-coding method |
|
|