引用本文: | 沈辉,吴学忠,李泽湘.并联机构奇异点的运动分岔研究.[J].国防科技大学学报,2004,26(6):54-57.[点击复制] |
SHEN Hui,WU Xuezhong,LI Zexiang.Motion Bifurcation at Singularities of Parallel Mechanisms[J].Journal of National University of Defense Technology,2004,26(6):54-57[点击复制] |
|
|
|
本文已被:浏览 7216次 下载 5775次 |
并联机构奇异点的运动分岔研究 |
沈辉, 吴学忠, 李泽湘 |
(国防科技大学 机电工程与自动化学院,湖南 长沙 410073)
|
摘要: |
采用静态分岔理论研究一般并联机构在奇异点处的运动分岔现象。通过约束方程研究了几种简单机构在驱动奇异和末端执行器奇异下的不同分岔类型,并研究了机构参数对分岔性态的影响。指出非持久性奇异分岔可以通过调整机构参数转换为持久性奇异分岔,从而克服机构在奇异点邻域内的运动不确定性。 |
关键词: 并联机构 奇异点 分岔 微分流形 |
DOI: |
投稿日期:2004-06-08 |
基金项目:国家自然科学基金—香港青年学者合作研究基金资助项目(50029501) |
|
Motion Bifurcation at Singularities of Parallel Mechanisms |
SHEN Hui, WU Xuezhong, LI Zexiang |
(College of Mechatronics Engineering and Automation, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
The elementary bifurcation theory is utilized to study the bifurcation of singularities of general parallel mechanisms. Based on constraint equations, some typical motion bifurcation of simple parallel mechanisms are researched and they can be classified into different styles by codimensions of constraint equations at actuator singular points or end-effector singular points. Finally, this paper discusses how the disturbance of mechanism parameters affects the bifurcation diagram of singularities and results show that those nonpersistent bifurcations of parallel mechanisms can be transformed into those persistent bifurcations so that the motion uncertainty at singularities can be overcome. |
Keywords: parallel mechanisms singularity bifurcation differential manifold |
|
|