引用本文: | 刘青宝,侯东风,邓苏,等.基于相对密度的增量式聚类算法.[J].国防科技大学学报,2006,28(5):73-79.[点击复制] |
LIU Qingbao,HOU Dongfeng,DENG Su,et al.Relative Density Based Incremental Clustering Algorithm[J].Journal of National University of Defense Technology,2006,28(5):73-79[点击复制] |
|
|
|
本文已被:浏览 6714次 下载 5625次 |
基于相对密度的增量式聚类算法 |
刘青宝, 侯东风, 邓苏, 张维明 |
(国防科技大学 信息系统与管理学院,湖南 长沙 410073)
|
摘要: |
基于聚类的相对性原则:簇内对象具有较高的相似度,而簇间对象则相反,提出一种基于相对密度的增量式聚类算法,它继承了基于绝对密度聚类算法的抗噪声能力强、能发现任意形状簇等优点[1],并有效解决了聚类结果对参数设置过于敏感、参数值难以确定以及高密度簇完全被相连的低密度簇所包含等问题。同时,通过定义新增对象的影响集和种子集能够有效支持增量式聚类。 |
关键词: 增量式聚类 K近邻 聚类参数 相对密度 |
DOI: |
投稿日期:2006-05-08 |
基金项目:国家自然科学基金资助项目(60172012) |
|
Relative Density Based Incremental Clustering Algorithm |
LIU Qingbao, HOU Dongfeng, DENG Su, ZHANG Weiming |
(College of Information System and Management, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
A new incremental clustering algorithm is proposed in this paper based on the relativity principle, which means that the similarities of objects in the same cluster is higher than those among different clusters. This approach not only inherits the advantages of absolute density based algorithms which can discover arbitrary shape clusters and are insensitive to noises[1], but also efficiently solves the following common problems: clustering results are very sensitive to the user-defined parameters, reasonable parameters are hard to be determined, and high density clusters are contained fully in coterminous low density clusters. With this approach, incremental clustering can also be supported effectively by defining the affected sets and seed sets of the updating objects in this approach. |
Keywords: incremental clustering K-nearest neighbors clustering parameter relative density |
|
|
|
|
|