引用本文: | 屈田兴,金治明.关于半鞅向量随机积分的两个结果.[J].国防科技大学学报,2008,30(2):135-138.[点击复制] |
QU Tianxing,JIN Zhiming.Two Results about the Vector Stochastic Integrals with Respect to Semimartingales[J].Journal of National University of Defense Technology,2008,30(2):135-138[点击复制] |
|
|
|
本文已被:浏览 6931次 下载 5996次 |
关于半鞅向量随机积分的两个结果 |
屈田兴, 金治明 |
(国防科技大学 理学院,湖南 长沙 410073)
|
摘要: |
首先利用半鞅Girsanov定理与闭图像定理证明了:若{Xn}是带滤基的完备概率空间(Ω,F,F,P)中的一列半鞅,其中滤基F=(Ft)t≥0满足通常条件,且{Xn}在关于P的Emery拓扑空间中收敛于X,则当概率测度Qloc《P时,{Xn}在关于Q的Emery拓扑空间中也收敛于X。在此基础上又证明了:若X是关于P的d维半鞅,d维可料过程H关于P在半鞅向量随机积分的意义下对X可积,则当概率测度Qloc《P时,H关于Q在半鞅向量随机积分的意义下也对X可积,并且两种积分是Q-无区别的。由于Q《P强于Qloc《P,故本文推广了文献[1]中的引理4.9与定理4.14。 |
关键词: 半鞅 向量随机积分 概率测度的局部连续性 可料过程 |
DOI: |
投稿日期:2008-01-22 |
基金项目:国家自然科学基金资助项目(60673090) |
|
Two Results about the Vector Stochastic Integrals with Respect to Semimartingales |
QU Tianxing, JIN Zhiming |
(College of Science, National Univ. of Defense Technology,Changsha 410073, China)
|
Abstract: |
Let{Xn} be a sequence of semimartingale in a filtered complete probability space (Ω,F,F,P) satisfying the usual condition. We use the general Girsanov thorem and closed graph theorem to prove that the sequence {Xn}converges on X in the Emery topology w.r.t Q if{Xn} converges on X in the Emery topology w.r.t P and the probability measureQloc《P. In light of this fact, we prove that if X is a d-dimensional semimartingale and a d-dimensional predictable process,H is X-integrable in the sense of vector stochastic integrals w.r.t P, when the probability measure Qloc《P, H is also X-integrable in the sense of vector stochastic integrals w.r.t Qand these two integrals are Q-differentiable. It is noted that the condition of Q《P is stronger than that of Qloc《P, therefore, this paper generalizes lemma 4.9 and theorem 4.14 in[1]. |
Keywords: semimartingale vector stochastic integral locally absolutely continuity of probability measure predictable process |
|
|