引用本文: | 戴清平,冯良贵.矩阵代数中可乘保范映照的显形式.[J].国防科技大学学报,2008,30(3):95-99.[点击复制] |
DAI Qingping,FENG Lianggui.Explicit Forms of Norm Preserving Multiplicative Maps[J].Journal of National University of Defense Technology,2008,30(3):95-99[点击复制] |
|
|
|
本文已被:浏览 6961次 下载 6335次 |
矩阵代数中可乘保范映照的显形式 |
戴清平, 冯良贵 |
(国防科技大学 理学院,湖南 长沙 410073)
|
摘要: |
在矩阵的可乘映照理论与应用中,判定一个可乘映照是否保持某类特定的数值特征以及获取可乘映照在保持某类数值特征条件下的解析式备受关注。对此,着重研究了一般可乘映照在具有某种保秩性或保范性下的表示问题。借助于构造的方法,给出了判定一个可乘映照是否为保秩映照的新的便捷方法。针对F=R或C,分别得到了Mn(F)上保1-范数、保∞-范数以及保F范数的可乘映照的显形式,进而证明了Mn (F)上保持1-范数可乘映照必为保F范数映照,而可乘保F范数映照又一定保谱半径、保数值半径、保正规性、保酉性等。 |
关键词: 可乘映照 矩阵范数 表示 |
DOI: |
投稿日期:2007-12-05 |
基金项目:国家自然科学基金资助项目(10471045);新世纪优秀人才计划项目 |
|
Explicit Forms of Norm Preserving Multiplicative Maps |
DAI Qingping, FENG Lianggui |
(College of Science, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
With the multiplicative map theory on matrix and its applications, a lot of attempts have been made for judging whether a multiplicative map can preserve certain desired numerical characters and obtain the explicit form of a multiplicative map under the restriction of perserving some numerical characters. In this respect, multiplicative maps without assuming linearity on matrix algebra, which have certain rank preserving or norm preserving properties, are considered mainly in this paper. By virtue of a way of construction, the complete descriptions of those maps are presented, and it is shown that a maximum column sum norm preserving multiplicative map is one of Frobenius norm and a Frobenius norm preserving multiplicative map must preserve spectral radius, numerical radius, normality, unitarity etc.. In particular, a new approach is also provided for judging whether a multiplicative map preserves rank. |
Keywords: mutliplicative map matrix norm representation |
|
|
|
|
|