引用本文: | 王世晞,贺志国.基于PCA特征的快速SAR图像目标识别方法.[J].国防科技大学学报,2008,30(3):136-140.[点击复制] |
WANG Shixi,HE Zhiguo.The Fast Target Recognition Approach Based on PCA Features for SAR Images[J].Journal of National University of Defense Technology,2008,30(3):136-140[点击复制] |
|
|
|
本文已被:浏览 7001次 下载 6417次 |
基于PCA特征的快速SAR图像目标识别方法 |
王世晞, 贺志国 |
(国防科技大学 电子科学与工程学院,湖南 长沙 410073)
|
摘要: |
目标识别是SAR图像解译的重要一环,受到广泛的关注,而实时性又是评估目标识别系统性能的主要指标之一。从实时的角度出发,提出了一种快速的SAR目标识别方法。该方法采用基于Hebb学习规则的主分量分析(PCA)进行特征提取,使用多层感知器神经网络(MLP NN)进行目标分类。实验结果表明,在维持较好识别性能的前提下,该方法具有内存需求少、运行速度快的特点,能用于实时处理。 |
关键词: 目标识别 特征提取 PCA 合成孔径雷达 神经网络 |
DOI: |
投稿日期:2008-04-23 |
基金项目: |
|
The Fast Target Recognition Approach Based on PCA Features for SAR Images |
WANG Shixi, HE Zhiguo |
(College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
The extensively focused target recognition is one of the important problems for SAR imagery interpretation. With the aim to real-time processing, a fast SAR target recognition system is built, which utilizes the principal component analysis (PCA) for feature extraction and a multi-layer neural network (MLP NN) as the classifier. The experimental results show that it consumes little memory and runs very fast, thus can be used in the real-time situation. |
Keywords: target recognition feature extraction PCA SAR neural network |
|
|