引用本文: | 刘健,钱猛,张维明.基于Fisher线性判别模型的文本特征选择算法.[J].国防科技大学学报,2008,30(5):135-138.[点击复制] |
LIU Jian,QIAN Meng,ZHANG Weiming.A Fisher Linear Discriminant Model-Based Text Feature Selection Algorithm[J].Journal of National University of Defense Technology,2008,30(5):135-138[点击复制] |
|
|
|
本文已被:浏览 6831次 下载 6848次 |
基于Fisher线性判别模型的文本特征选择算法 |
刘健, 钱猛, 张维明 |
(国防科技大学 信息系统与管理学院,湖南 长沙 410073)
|
摘要: |
在采用向量空间模型表示方法的文本分类系统中,维数约简是必要的步骤, 特征选择方法由于计算复杂度较低而被广泛采用。本文基于Fisher线性判别模型提出了一种新的文本特征选择算法,将其求解过程转换为一个特征项优化组合的问题,避免了复杂的矩阵变换运算。实验表明,该方法与信息增益、卡方统计方法比较,具有较明显的优势。 |
关键词: Fisher线性判别模型 文本分类 特征选择 |
DOI: |
投稿日期:2008-01-12 |
基金项目:国家自然科学基金资助项目(70371008) |
|
A Fisher Linear Discriminant Model-Based Text Feature Selection Algorithm |
LIU Jian, QIAN Meng, ZHANG Weiming |
(College of Information System and Management, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
Dimension reducing is very important in VSM based text classification system. Feature selection is more suitable for text data because of its efficiency. A new feature selection algorithm is proposed in this paper on the basis of Fisher linear discriminant model, which converts the solution process to feature optimization problem and avoids the complex matrix operations. The experiment shows that the new algorithm has good performance and is better than IG and CHI method. |
Keywords: fisher linear discriminant model text classification feature selection |
|
|