引用本文: | 王卓,吴宇列,戴一帆,等.光学材料抛光亚表面损伤检测及材料去除机理.[J].国防科技大学学报,2009,31(2):107-111.[点击复制] |
WANG Zhuo,WU Yulie,DAI Yifan,et al.Detection of Subsurface Damage and Material Removal Mechanism in Optical Polishing Process[J].Journal of National University of Defense Technology,2009,31(2):107-111[点击复制] |
|
|
|
本文已被:浏览 7821次 下载 6125次 |
光学材料抛光亚表面损伤检测及材料去除机理 |
王卓1, 吴宇列1, 戴一帆1, 李圣怡1, 鲁德凤2, 徐惠赟2 |
(1.国防科技大学 机电工程与自动化学院,湖南 长沙 410073;2.东莞新科技术研究开发有限公司,广东 东莞 523000)
|
摘要: |
抛光后光学元件仍然存在亚表面损伤,它降低光学元件的抗激光损伤能力和光学性能,为去除抛光亚表面损伤以提升光学元件使用性能,需要对其进行准确检测和表征。首先,采用恒定化学蚀刻速率法和二次离子质谱法分别检测水解层深度和抛光杂质的嵌入深度。然后,使用原子力显微镜检测亚表面塑性划痕的几何尺寸。通过分析表面粗糙度沿深度的演变规律,研究浅表面流动层、水解层和亚表面塑性划痕间的依存关系。最后,建立抛光亚表面损伤模型,并在此基础上探讨抛光材料去除机理。研究表明:水解层内包括浅表面流动层、塑性划痕和抛光过程嵌入的抛光杂质;石英玻璃水解层深度介于76和105nm之间;抛光过程是水解反应、机械去除和塑性流动共同作用的结果。 |
关键词: 亚表面损伤 抛光 水解层 材料去除机理 |
DOI: |
投稿日期:2008-08-17 |
基金项目:国家自然科学基金重点项目(50535020);新世纪优秀人才支持计划项目(NCET) |
|
Detection of Subsurface Damage and Material Removal Mechanism in Optical Polishing Process |
WANG Zhuo1, WU Yulie1, DAI Yifan1, LI Shengyi1, LU Defeng2, XU Huiyun2 |
(1.College of Mechatronics Engineering and Automation, National Univ. of Defense Technology, Changsha 410073, China;2.SAE Technologies Development Co., Ltd., Dongguan 523000, China)
|
Abstract: |
Subsurface damage (SSD) may still exist in polished elements, which influences laser induced damage threshold and optical performance. Therefore, SSD must be reduced and finally removed from the polished surface to improve the service performance of optical elements. Hence it is required to make the accurate detection and characterization of the polishing SSD. In the current approach, firstly, the depth of hydrolyzed layer and embedded polishing contaminants were detected with constancy chemical etch rate technique and secondary ion mass spectrography, respectively. Then, dimension of subsurface plastic scratches was measured with atomic force microscope. Furthermore, the development of surface roughness with depth was analyzed, in order to discuss the correlation among superficial flow layer, hydrolyzed layer, and subsurface plastic scratches. Finally, the SSD model in polishing process was established, and, material removal mechanism was proposed on the basis of the model. The results show that hydrolyzed layer contains superficial flow layer, plastic scratches, and polishing contaminants. The depth of hydrolyzed layer on polished fused silica surface ranges from 76nm to 105nm. Optical polishing process is responsible for the corporate effects of hydrolyzed action, mechanical removal, and plastic flow. |
Keywords: subsurface damage polishing hydrolyzed layer material removal mechanism |
|
|
|
|
|