引用本文: | 仲妍,骆志刚,吴枫.求解非对称线性方程组的 s-BiCR算法.[J].国防科技大学学报,2010,32(2):61-67.[点击复制] |
ZHONG Yan,LUO Zhigang,WU Feng.The s-BiCR Algorithm to Solve Nonsymmetric Linear Systems[J].Journal of National University of Defense Technology,2010,32(2):61-67[点击复制] |
|
|
|
本文已被:浏览 6350次 下载 5792次 |
求解非对称线性方程组的 s-BiCR算法 |
仲妍, 骆志刚, 吴枫 |
(国防科技大学 计算机学院,湖南 长沙 410073)
|
摘要: |
在BiCR算法的基础上,提出了求解非对称线性方程组的 s-BiCR算法。首先,给出了 s-BiCR的基本计算框架,介绍了算法基本原理及参数求解方法;其次,通过分析 s-BiCR中剩余向量与方向向量序列的基本性质,推导出减少参数求解计算量的方法,并在此基础上提出了一种更为高效的 s-BiCR算法;最后,证明了 s-BiCR的正确性,即在第i步产生的近似解与BiCR第is步产生的近似解是一致的,同时,通过性能分析发现,s-BiCR的同步通信次数与访存次数明显少于BiCR,说明该算法具有很好的并行特性和数据本地性。大量实验验证了 s-BiCR的高效性和正确性。 |
关键词: 非对称线性方程组 Krylov子空间 BiCR s -步方法 s-BiCR |
DOI: |
投稿日期:2009-11-30 |
基金项目:国家部委基金资助项目(9140C8103050601) |
|
The s-BiCR Algorithm to Solve Nonsymmetric Linear Systems |
ZHONG Yan, LUO Zhigang, WU Feng |
(College of Computer, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
Based on the BiCR algorithm, s-BiCR algorithm is proposed to solve nonsymmetric linear systems. Firstly, the basic computation frame for the s-BiCR was given by introducing the fundamental principle in the new method and the solution approach to the parameters. Next, according to the analysis of the characters of the sequences of residual vectors and direction vectors, an approach is deduced to reduce computational volume for the parameters so that a more effective advanceds-BiCR is designed. Finally, the correctness ofs-BiCR is proved, that is, the ith approximate solution froms-BiCR is equal to the isth approximate solution from BiCR. In addition, by performance analysis, the number of both synchronous communication and accessing memory fors-BiCR is less than the one for BiCR so the algorithm here has better parallel feature and data locality. The effectivity and validity ofs-BiCR have been confirmed by experiments. |
Keywords: nonsymmetric linear systems krylov subspace BiCR s-step methods s-BiCR |
|
|
|
|
|