引用本文: | 刘义,赵晶,董鸿燕,等.惯导速度信息辅助的被动雷达导引头量测误差抑制方法.[J].国防科技大学学报,2010,32(2):109-113.[点击复制] |
LIU Yi,ZHAO Jing,DONG Hongyan,et al.Error Suppressing in Passive Radar Seeker Using Velocity Measurement of Inertial Navigation System[J].Journal of National University of Defense Technology,2010,32(2):109-113[点击复制] |
|
|
|
本文已被:浏览 7124次 下载 6092次 |
惯导速度信息辅助的被动雷达导引头量测误差抑制方法 |
刘义1, 赵晶1, 董鸿燕2, 冯德军1, 王国玉1 |
(1.国防科技大学 电子科学与工程学院,湖南 长沙 410073;2.武汉通信指挥学院 信息作战系,湖北 武汉 430010)
|
摘要: |
针对被动雷达导引头由于受空间限制测角精度不高的问题,提出了一种基于弹目信息状态变量的扩展卡尔曼滤波方法。通过弹目信息状态变量(弹目距离、弹目视线方位角、弹目视线俯仰角)描述弹目相对位置信息,利用惯导速度信息构建基于弹目信息状态变量变化率的弹目相对运动模型。所提方法充分利用信息资源,抑制导引头量测随机误差,对于提高导弹的打击精度和攻击效果,具有重要的实际应用价值,仿真试验证明该算法的有效性。 |
关键词: 扩展卡尔曼滤波 弹目信息 捷联惯导系统 运动模型 |
DOI: |
投稿日期:2009-12-07 |
基金项目: |
|
Error Suppressing in Passive Radar Seeker Using Velocity Measurement of Inertial Navigation System |
LIU Yi1, ZHAO Jing1, DONG Hongyan2, FENG Dejun1, WANG Guoyu1 |
(1.College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China;2.Department of Information Operation, Commanding Communications Academy, Wuhan 430010,China)
|
Abstract: |
In order to enhance the angle measurement accuracy in passive radar seeker (PRS) restrained by weight volume, a novel Extended Kalman Filter (EKF) using missile-to-target relative state is proposed in this paper. Missile-to-target relative position was described by several relative state variables, including range, line-of-sight azimuth and elevation angle. Missile-to-target relative motion model was then established by using velocity measurement of Inertial Navigation system (INS). This approach can fully take advantage of onboard INS information, thus offering favorable PRS measuring error suppressing. It has practical application in enhancing missile strike precision, attacking performance as well as the ability of anti-target losing. The approach proposed is validated by the simulation in a representative scenario. |
Keywords: extended kalman filers missile-to-target information strapdown inertial navigation system motion model |
|
|
|
|
|