引用本文: | 钱林杰,程翥,石斌斌,等.基于降低运算复杂度的子空间跟踪算法稳健性分析.[J].国防科技大学学报,2010,32(3):75-81.[点击复制] |
QIAN Linjie,CHENG Zhu,SHI Binbin,et al.Stability and Robustness Analysis for Subspace Tracking Based on Reducing Computational Complexity[J].Journal of National University of Defense Technology,2010,32(3):75-81[点击复制] |
|
|
|
本文已被:浏览 6358次 下载 5723次 |
基于降低运算复杂度的子空间跟踪算法稳健性分析 |
钱林杰1,2, 程翥1, 石斌斌1, 万建伟1 |
(1.国防科技大学 电子科学与工程学院,湖南 长沙 410073;2.重庆通信学院,重庆 400030)
|
摘要: |
FDPM和FOOJA是目前两种最为有效的适用于主、次子空间跟踪的方法,属于低复杂度算法。进一步降低算法运算复杂度,对保证算法的实时性具有非常重要的意义。以降低算法运算复杂度为背景,通过对FDPM、FOOJA算法的分析,指出存在两种简化运算量的FDPM_1st_col、FOOJA_1st_col方法。在有限精度运算条件下,对四种方法的稳定性、数值鲁棒性进行了深入分析和讨论。通过实验仿真,对分析的结论进行了验证。 |
关键词: 子空间跟踪 运算复杂度 鲁棒性 稳定性 标准正交 |
DOI: |
投稿日期:2009-04-07 |
基金项目:国家部委资助项目(41901140401) |
|
Stability and Robustness Analysis for Subspace Tracking Based on Reducing Computational Complexity |
QIAN Linjie1,2, CHENG Zhu1, SHI Binbin1, WAN Jianwei1 |
(1.College of Electronic Science and Engineering, National Univ. of Defense Technology,Changsha 410073,China;2.Chongqing Communication Institute, Chongqing 400030, China)
|
Abstract: |
FDPM and FOOJA, which belong to the low complexity class, are the most efficient algorithms for principal or minor subspace tracking. Reducing computational cost is crucial for guaranteeing the real time implementation. Under lower computational complexity background, it was found that there exist two other simplified methods (FDPM_1st_col and FOOJA_1st_col) through analysis of FDPM and FOOJA. Under the finite word length condition, the stability and numerical robustness were analyzed and compared with the former two algorithms. Simulation results verified our conclusion. |
Keywords: subspace tracking computational complexity robustness stability orthonormality |
|
|
|
|
|