引用本文: | 黄建华,李劲.Lévy过程驱动的随机非牛顿流的鞅解.[J].国防科技大学学报,2012,34(5):169-174.[点击复制] |
HUANG Jianhua,LI Jin.Martingale solution of stochastic non-Newtonian fluid driven by Lévy noise[J].Journal of National University of Defense Technology,2012,34(5):169-174[点击复制] |
|
|
|
本文已被:浏览 6722次 下载 6078次 |
Lévy过程驱动的随机非牛顿流的鞅解 |
黄建华, 李劲 |
(国防科技大学 理学院,湖南 长沙 410073)
|
摘要: |
研究了Lévy过程驱动的随机非牛顿流动力系统。研究有限维近似问题解的分布在选定的Hilbert空间中的胎紧性,通过Skorohod嵌入定理和鞅表示定理, 得到随机非牛顿流鞅解的存在性。 |
关键词: 随机非牛顿流 鞅解 Lévy噪声 |
DOI: |
投稿日期:2012-03-09 |
基金项目:国家自然科学基金资助项目(10971225);湖南省自然科学基金资助项目(11JJ3004);留学回国科研启动基金资助项目 |
|
Martingale solution of stochastic non-Newtonian fluid driven by Lévy noise |
HUANG Jianhua, LI Jin |
(College of Science, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
The stochastic non-Newtonian flow driven by Lévy noises was studied. By the tight compactness of distribution of the solution for finite-dimensional approximate in a Hilbert space, and Skorohod embedding theorem and representation of martingale, the existence of the martingale solution was confirmed. |
Keywords: stochastic non-Newtonian fluid martingale solution Lévy noise |
|
|