引用本文: | 杨垚,陈超,刘彦君,等.防空系统建模与目标价值排序方法.[J].国防科技大学学报,2015,37(1):179-186.[点击复制] |
YANG Yao,CHEN Chao,LIU Yanjun,et al.Air defense system modeling and target value ranking[J].Journal of National University of Defense Technology,2015,37(1):179-186[点击复制] |
|
|
|
本文已被:浏览 9648次 下载 8049次 |
防空系统建模与目标价值排序方法 |
杨垚1, 陈超1, 刘彦君2, 刘忠1, 包卫东1 |
(1.国防科技大学 信息系统工程重点实验室, 湖南 长沙 410073;2.总后勤部信息中心 北京 100036)
|
摘要: |
针对当前防空系统模型的构建和评估偏向于定性处理以及仅考虑其结构特性而忽视了系统中目标与关系自身属性的问题,在分析现有模型与评估方法的基础上,提出了基于邻接矩阵的防空系统模型,定义了能力评估向量,采用目标对体系能力贡献程度的目标价值综合评价方法,并引用Pareto占优中等级前沿和拥挤距离的思想提出了目标等级和目标离散度的概念,形成了非劣性价值排序算法,同时使用加权以及性价比方法和其他网络评估方法排序,采用自身设计以及随机生成案例进行仿真实验,结果验证了基于邻接矩阵的防空系统模型以及价值排序算法的有效性。 |
关键词: 防空系统 目标价值 邻接矩阵 非劣性排序 |
DOI:10.11887/j.cn.201501030 |
投稿日期:2014-05-03 |
基金项目:国家自然科学基金资助项目(71101149,91024006) |
|
Air defense system modeling and target value ranking |
YANG Yao1, CHEN Chao1, LIU Yanjun2, LIU Zhong1, BAO Weidong1 |
(1.Science and Technology on Information System Engineering key Laboratory,National University of Defense Technology, Changsha 410073, China;2. PLA Logistics Information Center, Beijing 100036, China)
|
Abstract: |
To solve the problem of air defense system modeling and assessing which is partial to determine the nature, only paying attention to system structure and overlooking entity and relation property in system, some efforts have to be done. On the basis of recent model and assess method, put forward air defense system model based on adjacency matrix, define capacity assess vector, use the target value evaluation method that was based on target contribution degree to system capacity and put forward target rank and discrete degree based on Pareto dominance and crowding distance so as to form Non-inferiority rank algorithm, and use the weighting and cost performance and other network access methods as the comparison, establish random examples for simulation, simulation result proves that the air defense system model based on Markov logic and Non-inferiority value rank algorithm are efficiency. |
Keywords: air defense system target value adjacency matrix non-inferiority rank |
|
|
|
|
|