引用本文: | 雷虎民,张旭,董飞垚,等.零控脱靶量有限时间收敛制导律.[J].国防科技大学学报,2015,37(3):136-141.[点击复制] |
LEI Humin,ZHANG Xu,DONG Feiyao,et al.Finite time convergent zero-effort miss guidance law[J].Journal of National University of Defense Technology,2015,37(3):136-141[点击复制] |
|
|
|
本文已被:浏览 12865次 下载 8506次 |
零控脱靶量有限时间收敛制导律 |
雷虎民1, 张旭1, 董飞垚2, 李炯1 |
(1.空军工程大学 防空反导学院,陕西 西安 710051;2.中国人民解放军95437部队,四川 彭山 620864)
|
摘要: |
针对高速机动目标的拦截问题,研究了一种考虑导弹自动驾驶仪动态特性的零控脱靶量有限时间收敛制导律。对导弹-目标三维相对运动几何关系进行解耦,并考虑导弹的自动驾驶仪动态特性,推导了一种新型三维零控脱靶量模型;在此基础上,基于自适应滑模控制理论和有限时间稳定性理论,选取俯仰平面和偏航平面的零控脱靶量为滑模面,设计了零控脱靶量有限时间收敛三维自适应滑模制导律;对该制导律的稳定性和有限时间收敛特性进行了分析和证明。仿真结果表明,与比例制导律相比,所设计的制导律可使导弹的零控脱靶量在有限时间内收敛到零,且具有更高的制导精度。 |
关键词: 零控脱靶量 自动驾驶仪 有限时间收敛 制导律 |
DOI:10.11887/j.cn.201503022 |
投稿日期:2014-10-10 |
基金项目:航空科学基金资助项目(20130196004,20140196004) |
|
Finite time convergent zero-effort miss guidance law |
LEI Humin1, ZHANG Xu1, DONG Feiyao2, LI Jiong1 |
(1. Air and Missile Defense College, Air Force Engineering University, Xi′an 710051, China;2. The PLA Unit 95437, Pengshan 620864, China)
|
Abstract: |
A finite time convergent zero-effort miss guidance law considering the dynamics of the missile autopilot is proposed for the problems of intercepting high speed and maneuvering targets. The three-dimensional relative geometric relation between the missile and target is decoupled. A new three-dimensional zero-effort miss guidance model incorporating the dynamics of the missile autopilot is derived. Based on the adaptive sliding mode control theory and the finite time stability theory, the zero-effort miss in pitch plane and yaw plane is chosen as the sliding mode surfaces, and then the three-dimensional adaptive sliding mode guidance with finite time convergent zero-effort miss is proposed. The guidance law’s stability and finite time convergence ability are analyzed and proved. Simulation results show that the proposed guidance law can achieve the finite time convergence of the zero-effort miss, and has better guidance precision compared with the proportional guidance law. |
Keywords: zero-effort miss autopilot finite time convergence guidance law |
|
|