引用本文: | 吴佳妮,陈永光,徐振海,等.阵列雷达波束内双目标的极大似然角度估计方法.[J].国防科技大学学报,2016,38(6):130-135.[点击复制] |
WU Jiani,CHEN Yongguang,XU Zhenhai,et al.Maximum likelihood angle estimation of two targets with array radar[J].Journal of National University of Defense Technology,2016,38(6):130-135[点击复制] |
|
|
|
本文已被:浏览 7356次 下载 6504次 |
阵列雷达波束内双目标的极大似然角度估计方法 |
吴佳妮1, 陈永光2, 徐振海1, 熊子源1, 王雪松1 |
(1. 国防科技大学 电子信息系统复杂电磁环境效应国家重点实验室, 湖南 长沙410073;2. 北京跟踪与通信技术研究所, 北京 100094)
|
摘要: |
单波束内目标往往相距较近,采用传统角度分辨技术难以将其分辨,从而给目标跟踪和识别带来较大困难。于是提出基于LM算法的极大似然角度估计方法,实现波束内双目标的分辨。该方法在阵列雷达的基础上建立双目标回波模型,推导极大似然角度估计算法。考虑到求解算法直接影响极大似然角度估计的收敛速度和估计精度,利用LM算法实现了极大似然估计的求解,从而得到目标角度的精确估计。该方法避免了多次脉冲相干积累,具有计算量小的特点。仿真结果验证了方法的有效性。 |
关键词: 单波束内双目标 极大似然估计 LM算法 |
DOI:10.11887/j.cn.201606021 |
投稿日期:2015-05-17 |
基金项目:国家自然科学基金资助项目(61401488,61490694);国家863计划资助项目(2013AA122202) |
|
Maximum likelihood angle estimation of two targets with array radar |
WU Jiani1, CHEN Yongguang2, XU Zhenhai1, XIONG Ziyuan1, WANG Xuesong1 |
(1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System,
National University of Defense Technology, Changsha 410073, China;2. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China)
|
Abstract: |
As the targets in the same beam are close to each other, it is difficult to resolve them via traditional techniques. Furthermore, it also brings difficulty in detecting and tracking. The problem of resoling two targets in the same beam was studied with array radar. An echo model of two unresolved targets with array radar was established. An improved angle estimation method was proposed based on the maximum likelihood estimation principle. In consideration of the convergence speed and estimation accuracy, the Levenberg Marquardt method was applied to obtain the maximum likelihood estimation of target direction. The simulation results prove that the method performs well in several aspects, including smaller estimation error and computational cost. |
Keywords: two targets in the same beam maximum likelihood estimation Levenberg-Marquardt method |
|
|