引用本文: | 赵晨旭,邱静,刘冠军.测试性增长中资源优化配置模型及求解.[J].国防科技大学学报,2017,39(2):178-183.[点击复制] |
ZHAO Chenxu,QIU Jing,LIU Guanjun.Resource allocation problem formulation and solution in testability growth[J].Journal of National University of Defense Technology,2017,39(2):178-183[点击复制] |
|
|
|
本文已被:浏览 8254次 下载 6024次 |
测试性增长中资源优化配置模型及求解 |
赵晨旭1,2, 邱静1,2, 刘冠军1,2 |
(1. 国防科技大学 机电工程与自动化学院, 湖南 长沙 410073;2.
2.国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073)
|
摘要: |
良好的测试性设计对系统维修性具有重要意义,测试性增长试验通过一系列测试性设计缺陷发现和纠正措施,可保证系统测试性指标达到设计要求。针对基于延缓纠正的测试性增长过程中的资源配置问题进行研究,基于增长试验目标是否明确和试验资源是否受限制问题构建资源优化配置模型,并提出一种基于拉格朗日松弛和本地搜索的快速优化算法。仿真结果表明:该模型能够有效指导测试性增长中的资源优化配置问题,所提混合优化方法能够高效、准确地求解整数规划问题。 |
关键词: 测试性设计 资源配置 增长试验 整数规划 |
DOI:10.11887/j.cn.201702027 |
投稿日期:2015-10-08 |
基金项目:国家自然科学基金资助项目(51175502) |
|
Resource allocation problem formulation and solution in testability growth |
ZHAO Chenxu1,2, QIU Jing1,2, LIU Guanjun1,2 |
(1. College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China;2. 2. Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
Testability is crucial for the enhancement of system maintainability, and testability growth can promote the testability metric of the system to satisfy the design requirements by a series action of identifying and correcting the testability design defects. The test resources allocating problem arising in delay fix based testability growth was studied and modeled, considering that whether there are constrains on the growth object and growth test cost or not. A Lagrangian relaxation algorithm and local search hybrid optimal algorithm were applied to solve this problem. Simulation results show that the proposed model is feasible for the test resources allocating problem in testability growth test, and the hybrid optimal algorithm can promise the effectiveness and accuracy to the integer programming problem. |
Keywords: design for testability resource allocation growth test integer programming |
|
|
|
|
|