引用本文: | 徐立扬,吕震宙,王飞,等.多输出性能下的重要性测度指标及其求解方法.[J].国防科技大学学报,2017,39(4):154-160.[点击复制] |
XU Liyang,LYU Zhenzhou,WANG fei,et al.Global sensitivity analysis for multiple outputs and their solutions[J].Journal of National University of Defense Technology,2017,39(4):154-160[点击复制] |
|
|
|
本文已被:浏览 7849次 下载 6683次 |
多输出性能下的重要性测度指标及其求解方法 |
徐立扬, 吕震宙, 王飞, 肖思男 |
(西北工业大学 航空学院, 陕西 西安 710072)
|
摘要: |
针对基于马氏距离的重要性测度存在的问题,提出了基于谱分解加权摩尔彭罗斯马氏距离的重要性测度指标,通过构造多输出协方差阵的广义逆矩阵以及谱分解的策略,有效解决了协方差阵求逆奇异情况以及由于未能充分考虑多输出之间的相互关系而导致的错误识别重要变量的问题,克服了基于马氏距离指标的局限性。数值算例与工程算例结果表明:所提重要性测度可以更加准确地获得输入变量对结构系统多输出性能随机取值特征贡献的排序,从而为可靠性设计提供充分的信息。 |
关键词: 多输出 重要性测度 马氏距离 广义逆矩阵 谱分解加权 |
DOI:10.11887/j.cn.201704024 |
投稿日期:2016-03-04 |
基金项目:国家自然科学基金资助项目(NSFC51475370);中央高校基本科研业务费专项资金资助项目(3102015BJ(Ⅱ)CG009) |
|
Global sensitivity analysis for multiple outputs and their solutions |
XU Liyang, LYU Zhenzhou, WANG fei, XIAO Sinan |
(School of Aeronautics, Northwestern Polytechnical University, Xi′an 710072, China)
|
Abstract: |
Aiming at solving the existing drawbacks of indices of the Mahalanobis distance, an importance measure based on the Moore-Penrose Mahalanobis distance weighted by spectral decomposition was proposed. Through building the generalized matrix inversion of covariance matrix of multi-output and the spectral decomposition, the problems that the covariance matrix was be inversed and misidentification for lacking the adequate consideration about the relation among the multiple outputs were solved. Thus, the limitations of indices of Mahalanobis distance were overcome. The results of numerical examples and engineer instance show that the proposed importance measurement can accurately get the effects of input variables on the integrated performance of multi-output structure system, thus providing effective information for reliability design. |
Keywords: multivariate output importance measure Mahalanobis distance generalized inverse matrix weighted spectral decomposition |
|
|