引用本文: | 康忠涛,李清廉,成鹏.同轴环缝气流作用下锥形液膜线性稳定性分析.[J].国防科技大学学报,2019,41(2):17-23.[点击复制] |
KANG Zhongtao,LI Qinglian,CHENG Peng.Linear stability analysis of conical liquid film with coaxial annular gas flow[J].Journal of National University of Defense Technology,2019,41(2):17-23[点击复制] |
|
|
|
本文已被:浏览 6790次 下载 5378次 |
同轴环缝气流作用下锥形液膜线性稳定性分析 |
康忠涛1,2,3, 李清廉2,3, 成鹏2,3 |
(1.中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 四川 绵阳 621000;2.国防科技大学 高超声速冲压发动机技术重点实验室, 湖南 长沙 410073;3.国防科技大学 空天科学学院, 湖南 长沙 410073)
|
摘要: |
为了分析气液同轴离心式喷嘴的雾化机理,对同轴气体作用下的锥形液膜进行时间稳定性分析,推导同轴气体作用下锥形液膜的色散方程,建立离心式喷嘴出口参数预测模型,用于数值求解色散方程。结果表明:喷嘴出口液膜厚度随着喷注压降的增加而减小,喷雾锥角、液膜速度和轴向速度随着喷注压降的增加而增大。同轴气体作用下液膜由正弦模式的表面波主导,因为正弦模式的表面波增长率远大于曲张模式的表面波增长率。当环缝气体喷注速度较小时,增加气体速度会减小气液相对速度,从而减弱气液相互作用,使得液膜主导表面波增长率和频率减小、破碎时间和破碎长度增加。而当环缝气体速度超过一个临界值后,随着气体速度的增大,液膜主导表面波增长率和频率迅速增大,破碎时间和破碎长度迅速减小。 |
关键词: 锥形液膜 同轴环缝气流 线性稳定性分析 |
DOI:10.11887/j.cn.201902003 |
投稿日期:2016-10-09 |
基金项目:国家自然科学基金资助项目(11472303,11402298);新世纪优秀人才支持计划资助项目(NCET-13-0156) |
|
Linear stability analysis of conical liquid film with coaxial annular gas flow |
KANG Zhongtao1,2,3, LI Qinglian2,3, CHENG Peng2,3 |
(1.Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamic Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;2.Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China;3.College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
In order to analyze the atomization mechanism of gas liquid swirl injector, a temporal linear stability analysis method was used to investigate the conical liquid film with coaxial annular gas flow. The dispersion equation of a conical liquid film with coaxial annular gas flow was derived and a prediction model was proposed to calculate the parameters needed in solving the dispersion equation. The results show that the film thickness at the injector exit decreases with the increase of pressure drop while the spray cone angle, liquid film velocity and liquid film axial velocity increase with the increase of pressure drop. The sinuous mode disturbance wave dominates the breakup process of conical liquid film with coaxial annular gas flow because the growth rate of sinuous wave is much larger than that of varicose wave. When the gas flow velocity is small, the increase of gas velocity reduces the relative velocity of gas and liquid, which weakens the gas liquid interaction and eliminates the growth rate and frequency of the dominant wave. Finally the breakup time and breakup length increases. However, when the gas velocity is larger than a critical value, the growth rate and frequency of the dominant surface wave increase rapidly with the increase of gas flow velocity, which in turn lowers the breakup time and breakup length immediately. |
Keywords: conical liquid film coaxial annular gas flow linear stability analysis |
|
|
|
|
|