引用本文: | 杨鹏,程先哲,张勇,等.石墨烯电声换能器的设计与对比.[J].国防科技大学学报,2019,41(4):171-176.[点击复制] |
YANG Peng,CHENG Xianzhe,ZHANG Yong,et al.Design and comparison of graphene electroacoustic transducer[J].Journal of National University of Defense Technology,2019,41(4):171-176[点击复制] |
|
|
|
本文已被:浏览 7239次 下载 5869次 |
石墨烯电声换能器的设计与对比 |
杨鹏, 程先哲, 张勇, 刘冠军, 邱静 |
(国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073)
|
摘要: |
为了使石墨烯电声换能器获得最优性能,主要针对石墨烯热致发声器件和静电式发声器件进行了发声机理研究,通过理论建模和分析,得到了薄膜尺寸、厚度以及应力等结构参数对两种电声换能器的频率响应特性的影响规律。通过微纳加工制造方法设计和制备了一批不同结构参数下的电声换能器,并对这些器件进行了性能测试和对比分析,结果表明:薄膜厚度对热致电声换能器发声声压影响显著,即薄膜越薄,该电声换能器的发声声压越大;薄膜半径、厚度和应力对静电式电声换能器的频带影响较大,即薄膜半径越大,厚度越薄,应力越小,该电声换能器频带越宽。以上研究为优化选取石墨烯电声换能器的类型,优化设计结构参数,提升器件发声性能奠定了基础。 |
关键词: 电声换能 石墨烯 热致发声 发声器件 频响曲线 |
DOI:10.11887/j.cn.201904024 |
投稿日期:2018-10-02 |
基金项目:国防科技大学科研计划资助项目(ZK18-03-52) |
|
Design and comparison of graphene electroacoustic transducer |
YANG Peng, CHENG Xianzhe, ZHANG Yong, LIU Guanjun, QIU Jing |
(Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
In order to optimize the performance of graphene electroacoustic transducer, the research on the electroacoustic mechanism of graphene thermoacoustic sound device and graphene electrostatic sound device was conducted. Through theory modeling and analysis, the influence of structural parameters such as size, thickness and stress of graphene film on the frequency response characteristics of two kinds of electroacoustic transducers was obtained. Finally, a batch of electroacoustic transducers with different structural parameters were designed and fabricated. The performance test and comparison analysis of these devices show that the thickness of graphene film has a significant influence on the sound pressure of the thermoacoustic transducer, that is, the thinner the film is, the larger the sound pressure of the electroacoustic transducer is. The electrostatic transducer is influenced by the radius, thickness and stress of graphene film, that is, the corresponding film with larger radius, thinner thickness and smaller stress of the electrostatic transducer will have a wider frequency bandwidth. This research can lend support for the optimizing selection of graphene electroacoustic transducer, the optimizing design of structural parameters and the improvement of the device′s sound performance. |
Keywords: electroacoustic graphene thermoacoustic sound device frequency response curve |
|
|
|
|
|