引用本文: | 周晓松,梅志远.纤维缠绕复合材料夹芯圆柱体高应变率压缩吸能机理.[J].国防科技大学学报,2020,42(5):74-80.[点击复制] |
ZHOU Xiaosong,MEI Zhiyuan.Energy absorption mechanism of filament wound composite core cylinder under high strain rate compressive load[J].Journal of National University of Defense Technology,2020,42(5):74-80[点击复制] |
|
|
|
本文已被:浏览 6208次 下载 5416次 |
纤维缠绕复合材料夹芯圆柱体高应变率压缩吸能机理 |
周晓松1,梅志远2 |
(1. 中国人民解放军军事科学院 国防科技创新研究院, 北京 100071;2. 海军工程大学 舰船与海洋学院, 湖北 武汉 430033)
|
摘要: |
为研究纤维缠绕复合材料夹芯圆柱体吸能元件在高应变率冲击压缩载荷作用下的变形损伤模式和能量吸收机理,采用ABAQUS商用有限元软件和分离式Hopkinson压杆装置开展数值模拟分析和试验验证研究。对比分析宏观力学响应规律和微观损伤破坏机理,可知吸能结构元件在高应变率压缩载荷下的力学响应具有典型的弹塑性特征,内部芯材主要产生压缩塑性损伤,而表层复合材料沿环向产生拉伸断裂破坏。研究表明,该吸能元件冲击压缩吸能特性优异,可满足水下结构平台的冲击防护和浮力储备要求。 |
关键词: 复合材料 夹芯结构 高应变率 吸能机理 |
DOI:10.11887/j.cn.202005011 |
投稿日期:2019-04-15 |
基金项目:国家自然科学基金面上基金资助项目(51479205) |
|
Energy absorption mechanism of filament wound composite core cylinder under high strain rate compressive load |
ZHOU Xiaosong1, MEI Zhiyuan2 |
(1. National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China;2. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China)
|
Abstract: |
In order to investigate the damage modes and energy absorption mechanism of the filament wound composite core cylinder under high strain rate impact compression load, the numerical simulation analysis and experimental test verification were carried out by using the ABAQUS finite element software and the Hopkinson bar testing machine. The analysis of the mechanical response characteristics and damage modes show that the energy absorbing element has typical elastic-plastic response characteristics under the high rate impact compression loading. The inner core material mainly produces compression plastic damage, while the surface composite material produces tensile fracture damage along the hoop direction. The study results show that this type of energy absorbing element has excellent compression and energy absorption characteristics, and can achieve the impact protection and buoyancy reserve requirements of the underwater structure platform. |
Keywords: composite material core structure high strain rate energy absorption mechanism |
|
|